matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Do 29.04.2010
Autor: pippilangstrumpf

Aufgabe
Vor.: [mm] c_{k} [/mm] beschränkte Folge, [mm] d_{k} [/mm] Folge mit [mm] d_{k} [/mm] >0 für alle k aus [mm] \IN, \summe_{i=0}^{\infty} d_{k} [/mm] kovergent.
Beh: [mm] \summe_{i=0}^{\infty} d_{k}c_{k} [/mm] kovergent

Beweisidee:
Da [mm] d_{k} [/mm] konvergent gilt: k aus [mm] \IN, k_0 \ge [/mm] k für alle k>K
[mm] \summe_{i=0}^{\infty}d_{k} [/mm] konvergent: Es gibt c aus [mm] \IR [/mm] -> [mm] \summe_{i=0}^{\infty}d_{k}*c [/mm] konvergent -
-> [mm] c*\summe_{i=0}^{\infty}d_{k} [/mm] konvergent
[mm] \summe_{i=0}^{\infty}c_{k} [/mm] ist beschränkt
-> Es gibt k aus [mm] \IN k_0 \ge [/mm] k, [mm] Ic_{k}-c_{k_{0}} [/mm] < Epsilon und [mm] Ik-k_{0}I [/mm] < Delta. Mit Epsilon-Delta-Krit. und Cauchy Konvergenz folgt: -> [mm] c*\summe_{i=0}^{\infty}d_{k} [/mm] konvergent
[mm] ->\summe_{i=0}^{\infty} d_{k}c_{k} [/mm] kovergent
-> [mm] \summe_{i=0}^{\infty}c_{k} [/mm] konvergent

Kann mir jemand sagen, ob das passt?

DANKE.

        
Bezug
Konvergenz: nicht klar
Status: (Antwort) fertig Status 
Datum: 21:16 Do 29.04.2010
Autor: Loddar

Hallo pippilangstrumpf!


Nee, das passt m.E. nicht. Am Ende behauptest Du etwas, was gar nicht gefragt ist bzw. gar nicht gezeigt werden soll.

Aus " [mm] $c_k$ [/mm] ist beschränkt" (die Folge [mm] $c_k$ [/mm] , nicht als Reihe!) folgt:
[mm] $$\left|c_k|\le C$$ Und das dann mal einsetzen. Gruß Loddar [/mm]

Bezug
                
Bezug
Konvergenz: Idee
Status: (Frage) beantwortet Status 
Datum: 21:52 Do 29.04.2010
Autor: pippilangstrumpf

[mm] Ic_{k}I Zu zeigen: Die Folge der Partialsummen [mm] s_{k}:= Ic_{k}d_{k}I [/mm] ist beschränkt.
[mm] \summe_{k=o}^{n} d_{k} [/mm] konvergent -> [mm] D_{k}:= \summe_{k=0}^{n} Id_{k}I [/mm] konvergent
[mm] D_{k} [/mm] <D:
[mm] s_{k}:= \summe_{k=o}^{n} Ic_{k}d_{k}I \ge [/mm] C [mm] \summe_{k=o}^{n} d_{k} \ge [/mm] C*D ist beschränkt.

Danke für Hinweise!

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Fr 30.04.2010
Autor: Gonozal_IX

Hiho,

zum einen, benutz doch einfach bitte normale Betragsstriche.... die hast du auch auf deiner Tastatur => $|x|$

Dann:

> [mm]Ic_{k}I
>  Zu zeigen: Die Folge der Partialsummen [mm]s_{k}:= Ic_{k}d_{k}I[/mm]
> ist beschränkt.

Ja, auch wenn du das nicht brauchst, aber so gehts auch.

>  [mm]\summe_{k=o}^{n} d_{k}[/mm] konvergent -> [mm]D_{k}:= \summe_{k=0}^{n} Id_{k}I[/mm]

> konvergent

Warum ist die Folge von Beträgen konvergent? Das stimmt hier zwar, aber warum? Da fehlt eine Begründung.


>  [mm]D_{k}[/mm] <D:
>  [mm]s_{k}:= \summe_{k=o}^{n} Ic_{k}d_{k}I \ge[/mm] C
> [mm]\summe_{k=o}^{n} d_{k} \ge[/mm] C*D ist beschränkt.

Hier sind die Ungleichungen falsch, es muss [mm] \le [/mm] heissen, nicht [mm] \ge. [/mm]

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]