matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Konvergenz
Konvergenz < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:29 Mi 21.01.2009
Autor: Rube

Aufgabe
Wie zeige ich, dass die Folge [mm](a_n)=\bruch{n-1}{n} [/mm] gegen 1 konvergiert?


Mir ist das Konvergenz-Kriterium für Folgen schon "relativ" klar, aber wie flechte ich das in einen Beweis ein?


Vielen Dank für die Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: einsetzen
Status: (Antwort) fertig Status 
Datum: 17:32 Mi 21.01.2009
Autor: Loddar

Hallo Rube,

[willkommenmr] !!

Setze ein in die Bedingung für die Konvergenz:
[mm] $$\left| \ a_n-a \ \right| [/mm] \ = \ [mm] \left| \ \bruch{n-1}{n}-1 \ \right| [/mm] \ = \ [mm] \left| \ \bruch{n-1}{n}-\bruch{n}{n} \ \right| [/mm] \ = \ ... \ < \ [mm] \varepsilon$$ [/mm]
Anschließnd nach $n \ > \ ...$ umformen.


Gruß
Loddar


Bezug
                
Bezug
Konvergenz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:05 Mi 21.01.2009
Autor: Rube

Ist denn die Formulierung des Beweises so richtig?

Sei [mm]\varepsilon > 0[/mm] beliebig, dann ex. ein [mm]n_0 \in \IN[/mm] mit [mm]n_0 \le n[/mm] für alle [mm] n\in \IN [/mm]. Für diese gilt:
[mm] \mid a_n - a \mid = \mid \bruch{n-1}{n} - 1 \mid = \mid -\bruch{1}{n}\mid = \bruch{1}{n} < \varepsilon [/mm]

Damit ist die Folge [mm](a_n)[/mm] konvergent gegen 1

Bezug
                        
Bezug
Konvergenz: umformen
Status: (Antwort) fertig Status 
Datum: 18:37 Mi 21.01.2009
Autor: Loddar

Hallo Rube!


[ok] Nun noch nach $n \ > \ ...$ umformen, damit Du Dein [mm] $n_0 [/mm] \ = \ [mm] n(\varepsilon)$ [/mm] erhältst.


Gruß
Loddar


Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Mi 21.01.2009
Autor: Rube

Danke schön für deine Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]