matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 28.10.2008
Autor: SusanneK

Aufgabe
Untersuchen Sie, ob [mm] (a_n) [/mm] konvergiert und berechnen Sie gegebenenfalls den Grenzwert:
[mm] (a_n):=(1+(-1)^n\bruch{n-1}{n+1}) [/mm]

Hallo,
mein Ansatz ist Folgender:
Sei [mm] n>m, \varepsilon>0 [/mm], dann gilt [mm] |a_{2n}-a_m|<\varepsilon [/mm].
Das bedeutet dann für ein gerades m:
[mm] 1+\bruch{2n-1}{2n+1}-(1+\bruch{m-1}{m+1})=\bruch{4n-2m}{2nm+2n+m+1} < ... < \bruch{2}{m+1}<\varepsilon[/mm]
und für ein ungerades m:
[mm] 1+\bruch{2n-1}{2n+1}-(1-\bruch{m-1}{m+1})=\bruch{4nm-2}{2nm+2n+m+1} < ... < \bruch{2m}{m+1}<\varepsilon[/mm]

Was bedeuten denn jetzt diese 2 Ergebnisse ?
Da man in beiden Fällen für ein grösser werdendes m immer kleiner Epsilon bleibt, ist die Folge konvergent ?
Oder ist der ganze Ansatz falsch ?

Danke, Susanne.


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Di 28.10.2008
Autor: angela.h.b.


> Untersuchen Sie, ob [mm](a_n)[/mm] konvergiert und berechnen Sie
> gegebenenfalls den Grenzwert:
>  [mm](a_n):=(1+(-1)^n\bruch{n-1}{n+1})[/mm]


Hallo,

oft fährt man besser, wenn man sich erstmal anschaut, ob man beweisen oder widerlegen möchte.

Was man ja schonmal sieht: die Folgenglieder hängen davon ab, ob n gerade oder ungerade ist.

Du hast

[mm] a_n=\begin{cases} (1+\bruch{n-1}{n+1}), & \mbox{für } n \mbox{ gerade} \\ (1-\bruch{n-1}{n+1}), & \mbox{für } n \mbox{ ungerade} \end{cases}. [/mm]


Bedenke nun, daß [mm] \bruch{n-1}{n+1}=\bruch{n+1-2}{n+1}=1-\bruch{2}{n+1} [/mm] ist.

Jetzt siehst Du leicht, wogegen die geraden Folgenglieder konvergieren und wogegen die ungeraden.

Du hast also zwei Teilfolgen, die gegen verschiedene Grenzwerte konvergieren.

Also?

Gruß v. Angela



Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Di 28.10.2008
Autor: SusanneK

Hallo Angela,
VIELEN DANK !!

> oft fährt man besser, wenn man sich erstmal anschaut, ob
> man beweisen oder widerlegen möchte.

Wie wahr, und ich Esel habe 2 Blätter vollgekritzelt mit Rechnungen.

> Du hast also zwei Teilfolgen, die gegen verschiedene
> Grenzwerte konvergieren.

... also divergent.

VIELEN DANK !
LG, Susanne.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]