matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Konvergenz
Konvergenz < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: des Dirichlet-Integrals
Status: (Frage) beantwortet Status 
Datum: 13:19 Mo 10.09.2007
Autor: elefanti

Aufgabe
Es ist die Konvergenz des Dirichlet-Integrals [mm] \integral_{0}^{\infty}{(sin(x)/x) dx} [/mm] zu zeigen.

Hallo,

wir hatten als Konvergenzkriterium nur das Cauchy-Konvergenzkriterium. Daher sollte ich das wohl anwenden (ich habe es aber auch mit dem Majorantenkriterium versucht, aber leider keine Majorante gefunden).

Ich habe bisher:
[mm] \integral_{0}^{\infty}{(sin(x)/x) dx} [/mm]  = [mm] \integral_{0}^{\infty}{sin(x)*(1/x) dx} [/mm]  = [sin(x)*ln(x)] - [mm] \integral_{0}^{\infty}{cos(x)*ln(x) dx} [/mm]

So, ich denke jetzt könnte man mit dem Cauchy-Konvergenzkriterium weiterkommen, leider weiß ich nicht wie :(


Liebe Grüße
Elefanti

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mo 10.09.2007
Autor: leduart

Hallo
ich glaub kaum, dass du so weiter kommst!
Teil das Integral in ne Summe von Integralen, die jeweils [mm] \pi [/mm] lang sind. dann verwenden, dass sinx in den Intervallen  das Vorzeichen wechselt, du kriegst also ne Summe über ne alternierende Nullfolge. wegen [mm] -1\le sinx\le [/mm] 1
Gruss leduart

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 10.09.2007
Autor: elefanti

Hallo,

vielen Dank für den Tipp. Aber das geht tatsächlich nicht mit Cauchy? Mich wundert das ein bisschen, da wir den Satz dann nie angewendet haben und es wirklich für uns das einzige Konvergenzkriterium für Integrale ist.


Liebe Grüße
Elefanti

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 10.09.2007
Autor: leduart

Hallo
was genau meinst du hier mit dem Cauchy- Kriterium?
Dass die Differenz der Integrale bis n und bis m (n<m ) kleiner [mm] \varepsilon [/mm] ist, wenn [mm] n>N(\varepsilon) [/mm]
Dann musst du eben nur das hintere Teil des Integrals abschätzen.Aber auch da brauchst du das alternieren!
denk dran : [mm] \summe_{i=1}^{n}1/i [/mm] divergiert, [mm] \summe_{i=1}^{n}(-1)^i*1/i [/mm] divergiert, und das ist mit Cauchy schwer!
aber warum soll deine partielle Integration helfen, sinx*lnx schwankt für große x zwischen riesigen neg, und riesigenm pos, Wert, das Integral über cos*ln ist die gleiche Schwierigkeit wie sin*ln  da cos ja nur ein verschobener sin ist.
Gruss leduart

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Mo 10.09.2007
Autor: elefanti

Hallo,

meintest du das so:
[mm] \integral_{0}^{\pi}{(sin(x)/x) dx} [/mm] + [mm] \integral_{\pi}^{2 * \pi}{(sin(x)/x) dx} [/mm] + [mm] \integral_{2* \pi}^{3* \pi}{(sin(x)/x) dx}+ [/mm] ...


Liebe Grüße
Elefanti


Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Di 11.09.2007
Autor: dormant

Hi!

Ja, genau das hat leduart gemeint.

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]