matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Konvergenz
Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Komplexe Folge
Status: (Frage) beantwortet Status 
Datum: 20:04 Mi 23.08.2006
Autor: hooover

Aufgabe
Sei [mm] \alpha\in\IR, \alpha>0. [/mm] Konvergiert die komplexe Folge

[mm] a_{n}=e^{(-\alpha+i)}^n? [/mm] Wenn ja wogegen? Begründen Sie Ihre Antwort.

Hallo Leute

ich weiß nicht recht ob ich das mit den komplexen Zahlen richtig gemacht habe?

Hier ist erstmal das was ich gemacht habe.

[mm] a_{n}=e^{(-\alpha+i)}^n [/mm]

[mm] \limes_{n\rightarrow\infty}an=\limes_{n\rightarrow\infty}e^{(-\alpha+i)}^n=\limes_{n\rightarrow\infty}e^{(-\alpha(n))}+e^{in}=0+e^{i\infty}=\infty [/mm]


Also konvergiert die Folge [mm] a_{n} [/mm] gegen unendlich.

Mir fehlt da sone schöne Begründung warum. Vielleciht kann mir da jemand helfen.

Achso wie mach den ne Art Wertetabelle für n=0,...,10 und [mm] \alpha=\bruch{1}{4} [/mm]

Frage wie geh ich mit dem i um. Welche Werte bekommt das i.


Vielen Dank GRuß hooover


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 23.08.2006
Autor: Martin243

Hallo,

erstmal zu deiner letzten Frage: i ist KEINE Variable, sondern eine Konstante! Hierbei handelt es sich um die imaginäre Einheit, da die Folge ja komplexwertig ist, d.h. jeder Wert hat einen rellen und einen imaginären Teil. Vielleicht solltest du dir das nochmal ansehen.

Zu deiner Folge:
Bei der Umformung musst du die Potenzgesetze beachten!

[mm]a_n = e^{(-\alpha+i)n} = e^{-\alpha*n}*e^{in} = e^{-\alpha*n}*(i*\sin n + \cos n)[/mm]

Da wir wissen, dass Sinus und Cosinus nur Werte von -1 bis 1 annehmen, und der Exponentialteil gegen 0 strebt, strebt auch die Gesamtfolge gegen 0.

Wie du siehst, hast du nur [mm] \alpha [/mm] und n als Variablen, so dass die Wertetabelle kein Problem sein sollte...


Gruß
Martin

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mi 23.08.2006
Autor: hooover

Hallo ich dazu mal ne Frage,




>  Bei der Umformung musst du die Potenzgesetze beachten!
>  
> [mm]a_n = e^{(-\alpha+i)n} = e^{-\alpha*n}*e^{in} = e^{-\alpha*n}*(i*\sin n + \cos n)[/mm]
>  
> Da wir wissen, dass Sinus und Cosinus nur werte von -1 bis
> 1 annehmen, sind und der Exponentialteil gegen 0 strebt,
> strebt auch die Gesamtfolge gegen 0.


wo kommt denn aufeinmal da sinus und cosinus her.????

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mi 23.08.2006
Autor: SirJective


> > [mm]a_n = e^{(-\alpha+i)n} = e^{-\alpha*n}*e^{in} = e^{-\alpha*n}*(i*\sin n + \cos n)[/mm]
> wo kommt denn aufeinmal da sinus und cosinus her.????

Die []Eulersche Formel lautet [mm] $e^{i\phi} [/mm] = [mm] \cos \phi [/mm] + i [mm] \sin \phi$ [/mm] und gilt für alle komplexen Zahlen [mm] $\phi$. [/mm]
Sie ermöglicht es, Exponentiale komplexer Zahlen auf Exponentiale reeller Zahlen und trigonometische Funktionen zurückzuführen, indem man wie oben den Exponenten in Real- und Imaginärteil trennt.

Gruß,
SirJective


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]