matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz-Maximumsnorm Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz-Maximumsnorm Beweis
Konvergenz-Maximumsnorm Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz-Maximumsnorm Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Mi 25.04.2012
Autor: Gnocchi

Aufgabe
Sei [mm] x_k [/mm] := [mm] (x_k,_1 [/mm] ,...., [mm] x_k,_n) [/mm] /in [mm] /IR^{n} [/mm] eine Folge. Zeigen Sie: [mm] x_k [/mm] konvergiert gegen [mm] x:=(x_1 [/mm] ,...., [mm] x_n) [/mm] bezüglich der Max-Norm || [mm] ||_\infty [/mm] genau dann, wenn für alle [mm] j\le [/mm] n gilt: [mm] x_k,_j [/mm] konvergiert gegen [mm] x_j [/mm]

Also wir müssen ja nun zeigen:
[mm] x_k [/mm] konvergiert gegen x: [mm] =(x_1 [/mm] ,...., [mm] x_n) [/mm] bezüglich der Max-Norm || [mm] ||_\infty \gdw x_k,_j [/mm] konvergiert gegen [mm] x_j [/mm]

Für die Hinrichtung hat ich mir überlegt, dass aufgrund der Max-Norn die [mm] (x_1,...x_n) [/mm] ja gleich dem Maximum der einzelnen X-K Einträge sein also (max [mm] x_k,_1 [/mm] ,...., max [mm] x_k,_n). [/mm]
Zusätzlich hab ich mit der Definition der Konvergenz gearbeitet. Und hatte:
[mm] ||(x_k,_1 [/mm] ,..., [mm] x_k,_n)-(x_1 ,...,x_n)|| [/mm] = 0 und das ist kleiner als Epsilon. Nur weiß ich nicht ob das was bringt?
Gibt es dort eventuell andere hilfreiche Ansätze?
Für die Rückrichtung hab ich lediglich aufgeschrieben, dass die einzelnen [mm] x_k,_j [/mm] gegen [mm] x_j [/mm] konvergieren. Wie ich dort nun die Maximumsnorm reinbekomme, weiß ich nicht.

        
Bezug
Konvergenz-Maximumsnorm Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Do 26.04.2012
Autor: tobit09

Hallo Gnocchi,


>  Also wir müssen ja nun zeigen:
>  [mm]x_k[/mm] konvergiert gegen x: [mm]=(x_1[/mm] ,...., [mm]x_n)[/mm] bezüglich der
> Max-Norm || [mm]||_\infty \gdw x_k,_j[/mm] konvergiert gegen [mm]x_j[/mm]

für alle j=1,...,n.

>  
> Für die Hinrichtung hat ich mir überlegt, dass aufgrund
> der Max-Norn die [mm](x_1,...x_n)[/mm] ja gleich dem Maximum der
> einzelnen X-K Einträge sein also (max [mm]x_k,_1[/mm] ,...., max
> [mm]x_k,_n).[/mm]

Nein.

>  Zusätzlich hab ich mit der Definition der Konvergenz gearbeitet.

Gute Idee.

>  [mm]||(x_k,_1[/mm] ,..., [mm]x_k,_n)-(x_1 ,...,x_n)||[/mm] = 0

Nein.


>  Gibt es dort eventuell andere hilfreiche Ansätze?

Sei [mm] $j\in\{1,\ldots,n\}$. [/mm] Wir wollen zeigen: [mm] $(x_{k,j})_{k\in\IN}$ [/mm] konvergiert gegen [mm] $x_j$. [/mm]

Sei also [mm] $\varepsilon>0$. [/mm] Zu zeigen ist die Existenz eines [mm] $N\in\IN$ [/mm] mit [mm] $|x_{k,j}-x_j|<\varepsilon$ [/mm] für alle [mm] $k\ge [/mm] N$.

Was sagt dir die Konvergenz von [mm] $x_k$ [/mm] gegen $x$ für das gegebene [mm] $\varepsilon$ [/mm] nach Definition der Konvergenz?


>  Für die Rückrichtung hab ich lediglich aufgeschrieben,
> dass die einzelnen [mm]x_k,_j[/mm] gegen [mm]x_j[/mm] konvergieren. Wie ich
> dort nun die Maximumsnorm reinbekomme, weiß ich nicht.

Schreibe dir analog zur Hinrichtung auf, was zu zeigen ist. Dabei wird wieder so ein [mm] $\varepsilon>0$ [/mm] auftauchen.

Was liefert dir die Konvergenz von [mm] $x_{k,j}$ [/mm] gegen [mm] $x_j$ [/mm] für dieses [mm] $\varepsilon$ [/mm] nach Definition der Konvergenz?


Viele Grüße
Tobias

Bezug
        
Bezug
Konvergenz-Maximumsnorm Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Do 26.04.2012
Autor: fred97

Tipp:

für [mm] a=(a_1,...,a_n) \in \IR^n [/mm] gilt:

        [mm] |a_j| \le ||a||_{\infty} \le |a_1|+...+|a_n| [/mm]  für j=1,...,n.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]