matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergente Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergente Reihe
Konvergente Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Reihe: Beschränkte Partialsumme
Status: (Frage) beantwortet Status 
Datum: 19:50 So 08.12.2013
Autor: lula94

Aufgabe
Zeigen Sie, dass die foldende Reihe konvergiert, indem Sie nachweisen, dass die Folge der Partiansumme beschränkt ist.

$ [mm] \summe_{k=1}^{\infty}\frac{1}{n*2^n} [/mm] \ $




Hallo,
seit Stunden kämpfe ich mit dieser Aufgabe und komme einfach nicht weiter. Die Folge [mm] s_n [/mm] mit [mm] n{\in}N [/mm] ist beschränkt, wenn [mm] s_n [/mm] konvergiert und/oder wenn gilt [mm] s_n [/mm] < [mm] s_{n+1}. [/mm]
Leider scheitert es schon daran, aus der Summe gleich [mm] s_n [/mm] zu formulieren.

Mit dem Quotientenkriterium schaffe ich es zwar zu beweisen, dass die Summe konvergiert, aber man soll ja zuerst nachweisen, dass die Partialsumme beschränkt ist und DANN erst auf die Konvergenz kommen.

Hat jemand einen Tipp, wie man da anfangen könnte bzw. wie man auf [mm] s_n [/mm] kommt?

LG und vielen Dank im Voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 08.12.2013
Autor: DieAcht


> Zeigen Sie, dass die foldende Reihe konvergiert, indem Sie
> nachweisen, dass die Folge der Partiansumme beschränkt
> ist.
>  
> [mm]\summe_{k=1}^{\infty}\frac{1}{n*2^n} \[/mm]
>  Hallo,
>  seit Stunden kämpfe ich mit dieser Aufgabe und komme
> einfach nicht weiter. Die Folge [mm]s_n[/mm] mit [mm]n{\in}N[/mm] ist
> beschränkt, wenn [mm]s_n[/mm] konvergiert und/oder wenn gilt [mm]s_n[/mm] <
> [mm]s_{n+1}.[/mm]
>  Leider scheitert es schon daran, aus der Summe gleich [mm]s_n[/mm]
> zu formulieren.
>  
> Mit dem Quotientenkriterium schaffe ich es zwar zu
> beweisen, dass die Summe konvergiert, aber man soll ja
> zuerst nachweisen, dass die Partialsumme beschränkt ist
> und DANN erst auf die Konvergenz kommen.
>  
> Hat jemand einen Tipp, wie man da anfangen könnte bzw. wie
> man auf [mm]s_n[/mm] kommt?
>  
> LG und vielen Dank im Voraus!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Betrachten wir doch eine Reihe der Form [mm] \summe_{n=1}^{\infty}a_n [/mm] mit [mm] (a_n)_{a\in\IN} [/mm] und [mm] a_n\in\IR. [/mm]

Die Partialsummen der Reihe erhalten wir wie folgt:

[mm] S_1=a_1 [/mm]
[mm] S_2=a_1+a_2 [/mm]
[mm] \ldots [/mm]
[mm] S_N=a_1+\ldots+a_N=\summe_{n=1}^{N}a_n [/mm]

Die Partialsummenfolge der Reihe ist dann mit [mm] (s_N)_{N\in\IN} [/mm] gegeben.

Die Reihe konvergiert genau dann, wenn ihre Partialsummenfolge konvergiert. Dann schreiben wir:

[mm] \summe_{n=1}^{\infty}a_n=a:=\limes_{N\rightarrow\infty}s_N=\limes_{N\rightarrow\infty}\summe_{n=1}^{N}a_n [/mm]

Du sollst nun zeigen, dass die Reihe konvergiert und zwar mit der Monotonie, d.h. dass für fast alle Indizes [mm] n\in\IN:a_n\ge [/mm] 0 gilt und das die Partialsummefolge [mm] s_N [/mm] nach oben beschränkt ist. Dann existiert ein hinreichend großes [mm] M\in\IN, [/mm] sodass [mm] a_M [/mm] monoton wächst und beschänkt ist und damit konvergent!

Jetzt bist du dran!

Gruß
DieAcht

Bezug
        
Bezug
Konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 So 08.12.2013
Autor: Diophant

Hallo,

würdest du sagen, dass die Partialsummenfolge von

[mm] \sum_{n=1}^{\infty}\bruch{1}{2^n} [/mm]

beschränkt ist? Falls du (hoffentlich schnell) zu einem positiven Ergebnis kommst, dann sei dir ein gewisses Majorantenkriterium ans Herz gelegt.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]