matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKonvergente Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvergente Funktionen
Konvergente Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Funktionen: unter Normen
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 15.09.2008
Autor: sommersonne

Aufgabe
Sei V=C[0,1] und für [mm] n\in\IN [/mm] sei [mm] g_n\in [/mm] V definiert durch [mm] g_n(x)=x^n. [/mm] Untersuchen Sie für die Normen
[mm] \parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx} [/mm] und [mm] \parallel f\parallel_\infty [/mm] = [mm] \max_{x\in[0,1]}|f(x)| [/mm] auf V, ob [mm] (g_n) [/mm] konvergiert.

Hallo,

ich habe folgende Lösung:

[mm] \parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx} [/mm] =
[mm] \parallel f\parallel_1=\integral_{0}^{1}{|x^n| dx} [/mm] =
[mm] [|\bruch{x^{n+1}}{n+1}|] [/mm] =
[mm] \bruch{1^{n+1}}{n+1}-0= [/mm]
[mm] \bruch{1}{n+1} \le [/mm]
[mm] \bruch{1}{2} [/mm]

Also konvergent.


[mm] \parallel f\parallel_\infty [/mm] = [mm] \max_{x\in[0,1]}|f(x)|= |1^n|=1, [/mm] da 0 [mm] \le [/mm] x [mm] \le [/mm] 1 und [mm] n\in\IN. [/mm] D.h. umso kleiner der Wert x, umso kleiner ist der Wert von f(x).

Also konvergent.



Liebe Grüße
sommer[sunny]


        
Bezug
Konvergente Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 15.09.2008
Autor: Somebody


> Sei V=C[0,1] und für [mm]n\in\IN[/mm] sei [mm]g_n\in[/mm] V definiert durch
> [mm]g_n(x)=x^n.[/mm] Untersuchen Sie für die Normen
> [mm]\parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx}[/mm] und
> [mm]\parallel f\parallel_\infty[/mm] = [mm]\max_{x\in[0,1]}|f(x)|[/mm] auf V,
> ob [mm](g_n)[/mm] konvergiert.
>  Hallo,
>  
> ich habe folgende Lösung:
>  
> [mm]\parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx}[/mm] =
>  [mm]\parallel f\parallel_1=\integral_{0}^{1}{|x^n| dx}[/mm] =
>  [mm][|\bruch{x^{n+1}}{n+1}|][/mm] =
>  [mm]\bruch{1^{n+1}}{n+1}-0=[/mm]
>  [mm]\bruch{1}{n+1} \le[/mm]
>  [mm]\bruch{1}{2}[/mm]

Ich verstehe nicht, was Dir dies bringt. Konvergenz heisst doch: Konvergenz gegen etwas. Welches ist also die (punktweise) Grenzfunktion der [mm] $g_n(x)$? [/mm] - Ich denke, es ist die Funktion

[mm]g(x) := \begin{cases} 0 & (\text{für }x\in [0;1[)\\ 1 & (\text{für }x=1) \end{cases}[/mm]

Diese Funktion ist, nebenbei bemerkt, nicht in $C[0;1]$. Damit ist eigentlich Konvergenz der [mm] $g_n$ [/mm] gegen $g$ in $C[0;1]$ schon aus dem Fenster. Aber Du kannst natürlich auch versuchen, Konvergenz gegen eine andere als die punktweise Grenzfunktion, zum Beispiel gegen [mm] $g\equiv [/mm] 0$, zu zeigen. Dann musst Du die Frage untersuchen, ob [mm] $\parallel g_n-g\parallel_1\rightarrow [/mm] 0$ gilt, für [mm] $n\rightarrow \infty$. [/mm] Für diesen Nachweis kannst Du zwar grosse Teile der obigen Überlegung verwenden, aber dennoch ist Deine Überlegung kein Beweis der Konvergenz der [mm] $g_n$ [/mm] gegen [mm] $g\equiv [/mm] 0$ bezüglich der [mm] $\parallel \;\;\parallel_1$-Norm. [/mm]

> Also konvergent.
>  
>
> [mm]\parallel f\parallel_\infty[/mm] = [mm]\max_{x\in[0,1]}|f(x)|= |1^n|=1,[/mm]
> da 0 [mm]\le[/mm] x [mm]\le[/mm] 1 und [mm]n\in\IN.[/mm] D.h. umso kleiner der Wert x,
> umso kleiner ist der Wert von f(x).
> Also konvergent.

[notok] Denn [mm] $\parallel g_n-g\parallel_{\infty}$ [/mm] konvergiert für [mm] $n\rightarrow\infty$ [/mm] nicht gegen $0$. Es ist sogar [mm] $\parallel g_n-g\parallel_{\infty}=1$, [/mm] für alle $n$.
Des weiteren ist, wie erwähnt, nicht klar, welches denn die Grenzfunktion aus $C[0;1]$ sein soll, gegen die die [mm] $g_n$ [/mm] bezüglich der [mm] $\parallel\;\;\parallel_{\infty}$-Norm [/mm] konvergieren. Die punktweise Grenzfunktion $g$ kann es jedenfalls nicht sein und auch [mm] $g\equiv [/mm] 0$ liefert nicht das gewünschte Verhalten von [mm] $\parallel g_n-g\parallel_{\infty}\rightarrow [/mm] 0$, für [mm] $n\rightarrow \infty$. [/mm]

Bezug
                
Bezug
Konvergente Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 15.09.2008
Autor: sommersonne

Hallo,

danke für deine Antwort! Du hast mir sehr weitergeholfen.

Liebe Grüße
sommer[sunny]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]