matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonverenz uneigentl. Integale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Konverenz uneigentl. Integale
Konverenz uneigentl. Integale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konverenz uneigentl. Integale: Hilfe beim Integrieren
Status: (Frage) überfällig Status 
Datum: 19:44 Do 04.05.2006
Autor: kampfsocke

Aufgabe
Untersuchen Sie die uneigentlichen Integralen  [mm] \integral_{1}^{ \infty}{ \bruch{1}{( x^{13}-1)^{ \bruch{^1}{5}}}dx} [/mm] und  [mm] \integral_{- \infty}^{ \infty}{sin x^{8} dx} [/mm] auf Konvergenz.

Hallo ihrs,

inzwischen ist mir klar wie ich an die Aufgabe überhaupt ran gehen muss.

Beim ersten setze ich die obere Grenze gleich a, schreibe den Limes davor, integriere ganz normal, und gucke dann was passiert wenn a gegen unendlich geht.
Mein Problem liegt beim Integrieren, wie so oft. Klar ist, das ich die Substitution anwenden muss, und wahrscheinlich muss ich  [mm] x^{13} [/mm] ersetzen, aber bei mir wird der Ausdruck immer viel komplizierter.

Könnt ihr mir bitte beim integrieren helfen?

Vielen Dank!
Viele Grüße,
Sara

Ps: Die zweite Aufgabe braucht ihr nicht angucken, die sollte ich hin bekommen.

        
Bezug
Konverenz uneigentl. Integale: teil b schwerer als gedacht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Do 04.05.2006
Autor: kampfsocke

Hallo zusammen,

ich hab das zweite Integral wohl zu voreilig als machbar eingestuft.

[mm] \integral_{- \infty}^{ \infty}{sin x^{8} dx}= \integral_{0}^{b}{sin x^{8} dx}+\integral_{a}^{0}{sin x^{8} dx} [/mm]

Jetzt untersuche ich einzeln, ob das Integral existiert.

[mm] \limes_{b\rightarrow\infty}\integral_{0}^{b}{sin x^{8} dx} [/mm]

subst.: t= [mm] x^{8} [/mm] --> dt=8 [mm] x^{7} [/mm] dx --> dx= [mm] \bruch{1}{8 x^{7}}dt [/mm]

die neuen Grenzen sind dann 0 und  [mm] b^{8}. [/mm]

=  [mm] \limes_{b\rightarrow\infty}\integral_{0}^{b}{sin t \bruch{1}{8 x^{7}} dt} [/mm]

Und nun geht die wurschtelei los:

=  [mm] \limes_{b\rightarrow\infty}\integral_{0}^{b}{sin t \bruch{1}{8 x^{8}} \bruch{1}{ x^{-1}}dt} [/mm]

Jetzt habe ich t= [mm] x^{8} [/mm] nach x umgestellt, und eingesetzt:

=  [mm] \limes_{b\rightarrow\infty}\integral_{0}^{b}{sin t \bruch{ \wurzel{t}}{8t}dt} [/mm]

hier ist ein Fehler. Das muss natürlich die 8te Wurzel aus t sein. aber egal.

[mm] \bruch{ \wurzel{t}}{8t} [/mm] kann ich umformen zu  [mm] \bruch{1}{8 \wurzel{t}} [/mm]

jetzt heiß mein Integral:

=  [mm] \limes_{b\rightarrow\infty}\integral_{0}^{b}{sin t \bruch{1}{8 \wurzel{t}}dt} [/mm]

Aber das ist immernoch nicht einfacher.

Kann mir keiner sagen wie ich weitermachen soll oder ob das bisher den anschein hat richtig zu sein?

Es ist recht dringend.

Danke,
Sara

Bezug
                
Bezug
Konverenz uneigentl. Integale: Integralkosinus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 Do 04.05.2006
Autor: kampfsocke

So, jetzt hab ich das nochmal partiell integriert, und es kommt (zumindest bei mir) der Integralcosinus raus.
Also ist die Funktion wohl nicht konvergent. Geht ja nicht wirklich zu integrieren.
Verdammter Mist.

Bezug
        
Bezug
Konverenz uneigentl. Integale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Fr 05.05.2006
Autor: MatthiasKr

Hallo sara,

erstmal nur ein kleiner hinweis von mir: die integrale sehen für mich nicht so aus, als ob man da wirklich eine stammfunktion berechnen sollte.... ich habe sie mal beim wolfram integrator eingegeben und richtig hässliche ergebnisse bekommen.
Ich glaube, ihr sollt hier eher argumentieren, ob und warum diese integrale konvergieren oder halt nicht.
Allerdings muss ich zugeben, dass mir so auf den ersten blick auch dazu nicht besonders viel einfällt.... die zweite funktion ist achsensymmetrisch, du brauchst also nur den positiven bereich zu betrachten. da diese funktion für große x beliebig stark oszilliert, würde ich fast vermuten, dass das integral existiert , aber formal begründen kann ich es (noch) nicht.

VG
Matthias

Bezug
                
Bezug
Konverenz uneigentl. Integale: Diricklet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Di 09.05.2006
Autor: kampfsocke

Hallo, danke das du dir die Aufgabe angesetehn hast.
Wir sollten tatsächlich nur bis zu einem besimmten Punkt integrieren (da bin ich doch tatsächlich auch angekommen) und dann das "Diricklet" Kriterium anwenden.
Jetzt weiß ich auch dass es das gibt.
Viele Grüße,
//Sara

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]