matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKontrolle Vektorgeometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Kontrolle Vektorgeometrie
Kontrolle Vektorgeometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontrolle Vektorgeometrie: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:11 Mi 30.05.2007
Autor: Knuessel

Aufgabe
In einem katesisischem Koordinatensys. sind die Pkt. A(4/-2/0), B(-1,5/7), C(3/-6/1) gegeben. Bestimme die Ebene in Koordinatenform.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bitte einmal um Durchsicht:

1) Parameterform aufstellen:

E: [mm] \vec{x}= \vektor{3 \\ -5 \\ 0} [/mm] + [mm] \alpha \vektor{-3 \\ 1 \\ 2} [/mm] + [mm] \beta \vektor{2 \\ 5 \\ 2} [/mm]

2) Kreuzprodukt (Vektorprodukt)
[mm] \vec{n} [/mm] = [mm] \vektor{12 \\ 2 \\ -17} [/mm]

3) Koordinatenform sieht dann so aus: (d schon ausgerechnet)
[mm] 12x_{1}+2x_{2}-x_{17}+d=0 [/mm]
-> [mm] 12x_{1}+2x_{2}-x_{17}-26=0 [/mm]

Sehe ich das soweit richtig, oder hab ich mich oben verrechnet?

Dankeschön an alle mitleser =)

        
Bezug
Kontrolle Vektorgeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 30.05.2007
Autor: hase-hh

moin k,

> In einem katesisischem Koordinatensys. sind die Pkt.
> A(4/-2/0), B(-1,5/7), C(3/-6/1) gegeben. Bestimme die Ebene
> in Koordinatenform.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Bitte einmal um Durchsicht:
>  
> 1) Parameterform aufstellen:
>  
> E: [mm]\vec{x}= \vektor{3 \\ -5 \\ 0}[/mm] + [mm]\alpha \vektor{-3 \\ 1 \\ 2}[/mm]
> + [mm]\beta \vektor{2 \\ 5 \\ 2}[/mm]

das habe ich schon mal überhaupt nicht verstanden. wie kommst du denn zu deinem aufpunkt?

dreipunkteform der ebene:

A + r*(B-A) + s*(C-A)

wobei der aufpunkt ja auch B oder C sein könnte...

also:

E: [mm] \vec{x} [/mm] =  [mm] \vektor{4 \\ -2 \\ 0} [/mm] + r* ( [mm] \vektor{-1 \\ 5 \\ 7} [/mm] - [mm] \vektor{4 \\ -2 \\ 0} [/mm] ) + s* ( [mm] \vektor{3 \\ -6 \\ 1} [/mm] - [mm] \vektor{4 \\ -2 \\ 0 }) [/mm]

[mm] \vec{x} [/mm] =  [mm] \vektor{4 \\ -2 \\ 0} [/mm] + r* [mm] \vektor{-5 \\ 7 \\ 7} [/mm]  + s*  [mm] \vektor{-1 \\ -4 \\ 1} [/mm]

dann das kreuzprodukt bilden usw. ...

gruß
wolfgang

Bezug
                
Bezug
Kontrolle Vektorgeometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Mi 30.05.2007
Autor: Knuessel

Danke nur wenn ich eine Zeile verrutsche und die Werte von Aufgabe 2 nehme, komme ich darauf ... :P

Nee aber du hast Recht =) Dank dir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]