Kontinuitätsgleichung und... < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:18 Do 25.09.2014 | Autor: | murmel |
Aufgabe | Es sind folgende Gleichungen gegeben:
Gl.(1) [mm] \qquad[/mm] [mm]
\mathrm{i}\,\hbar \, \underbrace{\frac{\partial}{\partial t}\Psi \left(x,t\right)}_{A}=-\hbar \underbrace{\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right)}_{B} + V(x)\,\Psi \left(x,t\right)
[/mm]
Gl.(2) [mm] \qquad[/mm] [mm]
\varrho_x \left(x,t\right)= \left| \Psi \left(x,t\right) \right|^2 = \Psi \left(x,t\right)\Psi^{\*} \left(x,t\right)
[/mm]
Gl.(3) [mm] \qquad[/mm] [mm]
j_x \left(x,t\right)= \frac{\hbar}{2m \mathrm{i}}\left( \Psi^{\*} \left(x,t\right) \frac{\partial }{\partial x} \Psi \left(x,t\right) - \Psi \left(x,t\right) \frac{\partial }{\partial x} \Psi^{\*} \left(x,t\right)\right)
[/mm]
Gl.(4) [mm] \qquad[/mm] [mm]
\frac{\partial}{\partial t} \varrho_x \left(x,t\right)+\frac{\partial}{\partial x} j_x \left(x,t\right) = 0
[/mm] |
Wie kann ich zeigen, dass, ausgehend von der zeitabhängigen Schrödinger-Gl. (Gl.1) (wofür der Buchstabe A bzw. B unter der jeweiligen, geschweiften Klammer steht, erkläre ich in meinem "Lösungsansatz", weiter unten) , mit gegebener Aufenthaltswahrscheinlichkeitsdichte (Gl.2) und gegebenem Aufenthaltswahrscheinlichkeitsstrom (Gl.3) die Kontinuitätsgleichung (Gl.4)folgt?
Mein Lösungsansatz:
Ich bilde [mm] $\partial j/\partial [/mm] x$:
[mm]
\begin{array}{ll}
\frac{\partial}{\partial x} j_x &= \frac{\partial}{\partial x}\left[\frac{\hbar}{2m \mathrm{i}}\left( \Psi^{\*} \left(x,t\right) \frac{\partial }{\partial x} \Psi \left(x,t\right) - \Psi \left(x,t\right) \frac{\partial }{\partial x} \Psi^{\*} \left(x,t\right)\right)\right]\\[1.25em]
&\Rightarrow \frac{\hbar}{2m \mathrm{i}}\left(\Psi^{\*} \left(x,t\right)\,\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right) -\Psi \left(x,t\right)\,\frac{\partial^2}{\partial x^2}\Psi^{\*} \left(x,t\right)\,\right)
\end{array}
[/mm]
Letztere Zeile erhalte ich bei der Anwendung der Produktregel auf die Wellenfunktion und ihrer Komplex-Konjugierten, mit anschließender Vereinfachung.
Anschließend bilde ich [mm] $\partial \varrho_x/\partial [/mm] t$:
[mm]
\begin{array}{ll}
\frac{\partial}{\partial t} \varrho_x &= \frac{\partial}{\partial t}\left[\left| \Psi \left(x,t\right) \right| \cdot \left| \Psi \left(x,t\right) \right|\right]\\[1.25em]
&= \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right| + \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right|\\[1.25em]
&= 2\, \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right|
\end{array}
[/mm]
Man könnte aber auch schreiben:
[mm]
\begin{array}{ll}
\frac{\partial}{\partial t} \varrho_x &= \frac{\partial}{\partial t}\left[ \Psi \left(x,t\right) \cdot \Psi^{\*} \left(x,t\right)\right]\\[1.25em]
&= \Psi \left(x,t\right) \frac{\partial}{\partial t} \Psi^{\*} \left(x,t\right) + \Psi^{\*} \left(x,t\right) \frac{\partial}{\partial t} \Psi \left(x,t\right)\\
\end{array}
[/mm]
Wenn ich die Ableitung der Aufenthaltswahrscheinlichkeitsdichte(funktion) entsprechend nach A umstelle, kann ich diese ja in (Gl.1) einsetzen, entsprechendes gilt für die Ableitung von [mm] $j_x(x,t)$, [/mm] die ich nach B umstelle und einsetze.
Ist das sinnvoll?
Die (Gl.1) würde dann also nach dem Umstellen und Einsetzen von A so aussehen
[mm]
0 = V(x)\,\Psi \left(x,t\right) - \hbar \underbrace{\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right)}_{B} + \frac{\mathrm{i} \hbar}{2 \Psi \left(x,t\right)} \frac{\partial}{\partial t}\varrho_x \left(x,t\right)
[/mm]
Nach Einsetzen von B sieht (Gl.1) so aus:
[mm]
0 = V(x)\,\Psi \left(x,t\right) - \hbar \left(\frac{1}{\Psi^{\*} \left(x,t\right) } \frac{\partial }{\partial x}j_x + \frac{\hbar}{2m \mathrm{i}}\frac{1}{\Psi^{\*} \left(x,t\right)} \Psi \left(x,t\right) \frac{\partial^2 }{\partial x^2} \Psi^{\*} \left(x,t\right)\right) + \frac{\mathrm{i} \hbar}{2 \Psi \left(x,t\right) } \frac{\partial}{\partial t}\varrho_x \left(x,t\right)
[/mm]
Ab hier komme ich nicht weiter.
Für Hilfe bin ich dankbar.
|
|
|
|
Hallo,
> Es sind folgende Gleichungen gegeben:
>
> Gl.(1) [mm]\qquad[/mm] [mm]
\mathrm{i}\,\hbar \, {\frac{\partial}{\partial t}\Psi \left(x,t\right)}=-\hbar {\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right)} + V(x)\,\Psi \left(x,t\right)
[/mm]
>
>
> Gl.(2) [mm]\qquad[/mm] [mm]
\varrho_x \left(x,t\right)= \left| \Psi \left(x,t\right) \right|^2 = \Psi \left(x,t\right)\Psi^{\*} \left(x,t\right)
[/mm]
>
>
> Gl.(3) [mm]\qquad[/mm] [mm]
j_x \left(x,t\right)= \frac{\hbar}{2m \mathrm{i}}\left( \Psi^{\*} \left(x,t\right) \frac{\partial }{\partial x} \Psi \left(x,t\right) - \Psi \left(x,t\right) \frac{\partial }{\partial x} \Psi^{\*} \left(x,t\right)\right)
[/mm]
>
>
> Gl.(4) [mm]\qquad[/mm] [mm]
\frac{\partial}{\partial t} \varrho_x \left(x,t\right)+\frac{\partial}{\partial x} j_x \left(x,t\right) = 0
[/mm]
>
> Wie kann ich zeigen, dass, ausgehend von der
> zeitabhängigen Schrödinger-Gl. (Gl.1) (wofür der
> Buchstabe A bzw. B unter der jeweiligen, geschweiften
> Klammer steht, erkläre ich in meinem "Lösungsansatz",
> weiter unten) , mit gegebener
> Aufenthaltswahrscheinlichkeitsdichte (Gl.2) und gegebenem
> Aufenthaltswahrscheinlichkeitsstrom (Gl.3) die
> Kontinuitätsgleichung (Gl.4)folgt?
Die Kontinuitätsgleichung folgt doch sofort aus Gl. (1).
Betrachte dazu die Schrödingergleichung
Gl. (1.1) [mm] i\hbar \partial_t\Psi=\left(-\frac{\hbar^2}{2m}\delta^2_x+V\right)\Psi
[/mm]
Und betrachte auch
Gl. (1.2) [mm] -i\hbar \partial_t\Psi^{\star}=\left(-\frac{\hbar^2}{2m}{\partial^2}_x+V\right)\Psi^{\star}
[/mm]
Multipliziere nun Gl. (1.1) von rechts mit [mm] \Psi^{\star} [/mm] und Gl. (1.2) von rechts mit [mm] \Psi.
[/mm]
Bilde dann die Differenz der beiden und du erhältst
[mm] i\hbar\partial_t(\Psi^{\star}\Psi)=-\frac{\hbar^2}{2m}(\Psi^{\star}{\partial^2}_x\Psi-\Psi{\partial^2}_x\Psi^{\star})=\nabla(-\frac{\hbar^2}{2m}(\Psi^{\star}\nabla\Psi-\Psi\nabla\Psi^{\star}))
[/mm]
Jetzt siehst du auch, wie du Gl. (2) und Gl. (3) einbringen musst.
Dann hast du alles sofort dastehen.
>
>
>
> Mein Lösungsansatz:
>
> Ich bilde [mm]\partial j/\partial x[/mm]:
>
>
> [mm]
\begin{array}{ll}
\frac{\partial}{\partial x} j_x &= \frac{\partial}{\partial x}\left[\frac{\hbar}{2m \mathrm{i}}\left( \Psi^{\*} \left(x,t\right) \frac{\partial }{\partial x} \Psi \left(x,t\right) - \Psi \left(x,t\right) \frac{\partial }{\partial x} \Psi^{\*} \left(x,t\right)\right)\right]\\[1.25em]
&\Rightarrow \frac{\hbar}{2m \mathrm{i}}\left(\Psi^{\*} \left(x,t\right)\,\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right) -\Psi \left(x,t\right)\,\frac{\partial^2}{\partial x^2}\Psi^{\*} \left(x,t\right)\,\right)
\end{array}
[/mm]
>
> Letztere Zeile erhalte ich bei der Anwendung der
> Produktregel auf die Wellenfunktion und ihrer
> Komplex-Konjugierten, mit anschließender Vereinfachung.
> Anschließend bilde ich [mm]\partial \varrho_x/\partial t[/mm]:
>
> [mm]
\begin{array}{ll}
\frac{\partial}{\partial t} \varrho_x &= \frac{\partial}{\partial t}\left[\left| \Psi \left(x,t\right) \right| \cdot \left| \Psi \left(x,t\right) \right|\right]\\[1.25em]
&= \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right| + \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right|\\[1.25em]
&= 2\, \left| \Psi \left(x,t\right) \right|\frac{\partial}{\partial t}\left| \Psi \left(x,t\right) \right|
\end{array}
[/mm]
>
> Man könnte aber auch schreiben:
>
> [mm]
\begin{array}{ll}
\frac{\partial}{\partial t} \varrho_x &= \frac{\partial}{\partial t}\left[ \Psi \left(x,t\right) \cdot \Psi^{\*} \left(x,t\right)\right]\\[1.25em]
&= \Psi \left(x,t\right) \frac{\partial}{\partial t} \Psi^{\*} \left(x,t\right) + \Psi^{\*} \left(x,t\right) \frac{\partial}{\partial t} \Psi \left(x,t\right)\\
\end{array}
[/mm]
>
> Wenn ich die Ableitung der
> Aufenthaltswahrscheinlichkeitsdichte(funktion) entsprechend
> nach A umstelle, kann ich diese ja in (Gl.1) einsetzen,
> entsprechendes gilt für die Ableitung von [mm]j_x(x,t)[/mm], die
> ich nach B umstelle und einsetze.
>
> Ist das sinnvoll?
>
>
> Die (Gl.1) würde dann also nach dem Umstellen und
> Einsetzen von A so aussehen
>
>
> [mm]
0 = V(x)\,\Psi \left(x,t\right) - \hbar \underbrace{\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\Psi \left(x,t\right)}_{B} + \frac{\mathrm{i} \hbar}{2 \Psi \left(x,t\right)} \frac{\partial}{\partial t}\varrho_x \left(x,t\right)
[/mm]
>
>
> Nach Einsetzen von B sieht (Gl.1) so aus:
>
>
>
> [mm]
0 = V(x)\,\Psi \left(x,t\right) - \hbar \left(\frac{1}{\Psi^{\*} \left(x,t\right) } \frac{\partial }{\partial x}j_x + \frac{\hbar}{2m \mathrm{i}}\frac{1}{\Psi^{\*} \left(x,t\right)} \Psi \left(x,t\right) \frac{\partial^2 }{\partial x^2} \Psi^{\*} \left(x,t\right)\right) + \frac{\mathrm{i} \hbar}{2 \Psi \left(x,t\right) } \frac{\partial}{\partial t}\varrho_x \left(x,t\right)
[/mm]
>
>
> Ab hier komme ich nicht weiter.
>
>
> Für Hilfe bin ich dankbar.
|
|
|
|