matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeKons. eines Fundamentalsystema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Kons. eines Fundamentalsystema
Kons. eines Fundamentalsystema < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kons. eines Fundamentalsystema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 17.02.2009
Autor: philipp-100

Hi,
habe mal ein paar fragen dazu:

1. Wann ist ein eigenwert einfach und wann 2fach?
2.
Bsp. ich soll ein fundamenalsytem konstruieren:

habe den einfachen ew=-3 raus und den 2fachen ew=2 raus.

zum einfach bekomme ich einen eigenvektor raus und zum zweifach bekomme ich auch einen eigenvektor raus.(rang ist beide male 2)

jetzt muss ich ja noch einen dritten ev 2 stufe ausrechnen.

ist es jetzt  egal welchen der beiden zuvor ausgerechneten evs ich jetzt zur hilfe nehme?
oder muss ich z.b den mit dem zweifachen ew nehmen?
danke für eure hilfe!

        
Bezug
Kons. eines Fundamentalsystema: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Di 17.02.2009
Autor: MathePower

Hallo philipp-100,


> Hi,
>  habe mal ein paar fragen dazu:
>  
> 1. Wann ist ein eigenwert einfach und wann 2fach?


Wenn der Eigenwert als einfache bzw. doppelte Nullstelle
im charakteristischen Polynom auftritt.

>  2.
>  Bsp. ich soll ein fundamenalsytem konstruieren:
>  
> habe den einfachen ew=-3 raus und den 2fachen ew=2 raus.
>  
> zum einfach bekomme ich einen eigenvektor raus und zum
> zweifach bekomme ich auch einen eigenvektor raus.(rang ist
> beide male 2)
>  
> jetzt muss ich ja noch einen dritten ev 2 stufe
> ausrechnen.
>  
> ist es jetzt  egal welchen der beiden zuvor ausgerechneten
> evs ich jetzt zur hilfe nehme?
>  oder muss ich z.b den mit dem zweifachen ew nehmen?


Um den Eigenvektor 2. Stufe zum Eigenwert 2 zu ermitteln,
mußt Du den zuvor ermittelten Eigenvektor zum Eigenwert 2 nehmen.


>  danke für eure hilfe!


Gruß
MathePower

Bezug
                
Bezug
Kons. eines Fundamentalsystema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 17.02.2009
Autor: philipp-100

hi,
danke für deine antwort

"Wenn der Eigenwert als einfache bzw. doppelte Nullstelle
im charakteristischen Polynom auftritt."

kannst du mir das vielleicht mal anhand eines bsp zeigen, wäre sehr nett.

2.

"m den Eigenvektor 2. Stufe zum Eigenwert 2 zu ermitteln,
mußt Du den zuvor ermittelten Eigenvektor zum Eigenwert 2 nehmen."

das meinte ich nicht so, man ermittelt ja allgemein einen eigenvektor 2 stufe.
den könnnt ich dann ja auch von -3 berechnen.
musss ich den jetzt von 2 berechnen?
wollte einfach wissen



Bezug
                        
Bezug
Kons. eines Fundamentalsystema: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Di 17.02.2009
Autor: angela.h.b.


> "Wenn der Eigenwert als einfache bzw. doppelte Nullstelle
>  im charakteristischen Polynom auftritt."
>  
> kannst du mir das vielleicht mal anhand eines bsp zeigen,
> wäre sehr nett.

Hallo,

aber ich denke, Du hattest das selbst schon ermittelt? Du schriebst doch

>>> habe den einfachen ew=-3 raus und den 2fachen ew=2 raus.

Das bedeutet, daß [mm] p(x)=(x+3)(x-2)^2 [/mm] das charakteristische Polynom ist.

>  
> 2.
>  
> "m den Eigenvektor 2. Stufe zum Eigenwert 2 zu ermitteln,
>  mußt Du den zuvor ermittelten Eigenvektor zum Eigenwert 2
> nehmen."
>  
> das meinte ich nicht so, man ermittelt ja allgemein einen
> eigenvektor 2 stufe.

Nein, den Eigenwert 2. Stufe brauchst Du zum Eigenwert 2, weil dieser ja die Vielfachheit 2 hat.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]