matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKonkave / Konvexe Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Konkave / Konvexe Funktion
Konkave / Konvexe Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konkave / Konvexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 22.11.2008
Autor: Marry2605

Aufgabe
Bestimme die Intervalle in denen die Funktionen konkav oder konvex sind
a) x³-5x²+3x-5
[mm] b)(x+1)^4 [/mm] + [mm] e^x [/mm]

Die Bedingung für Konvexität bzw. das eine Funktion Konkav ist sind ja folgende:
f ist konvex wenn 2. Ableitung >= 0
f ist konkav wenn 2. Ableitung <= 0

Jetzt mal an der Aufgabe a :
2. Ableitung ist
6x-10
Um jetzt die Intervalle festzulegen schaue ich doch einfach für welche Werte von x die 2. Ableitung kleiner 0 bzw. größer Null ist also:
Das wäre jetzt hier von [mm] -\infty [/mm] bis 2 erhalte ich Werte kleiner Null. Für alle Zahlen >=2 erhalte ich Werte größer Null, also wäre sie ab 2 Konvex?

LG


        
Bezug
Konkave / Konvexe Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Sa 22.11.2008
Autor: leduart

Hallo
wie kommst du auf 2? Das Vorzeichen von 6x-10 wechselt doch bei 6x-10-0 also x=10/6  wenn du das fuer deine 2 einsetzt wirds richtig.
immer die Wendepunkte ausrechnen, die heissen so, weil sich da das kruemmungsverhalten wendet!
Gruss leduart

Bezug
                
Bezug
Konkave / Konvexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Sa 22.11.2008
Autor: Marry2605

Naja, ich hab irgendwie einfahc gerundet :-) War wohl ne blöde idee ...

Stimmt, wo du das sagst erschließt sich mir das mit dem Wendepunkt auch!
FÜr einen Wendepunkt muss ich aber dann doch noch prüfen ob die 3. Ableitung [mm] \not= [/mm] 0 ist?

Bei meinem 2. Beispiel wäre es dann ja wie folgt:

f(x) = [mm] (x+1)^4 [/mm] + [mm] e^x [/mm]
f1(x) = [mm] 4(x+1)^3 [/mm] + [mm] e^x [/mm]
f2(x) = [mm] 12(x+1)^2 [/mm] + [mm] e^x [/mm]

Wie es jetzt weiter geht ist klar, ich frag mich jetzt grad wie ich das ganze nach x Auflöse, mich stört etwas dieses [mm] e^x? [/mm]

lg


Bezug
                        
Bezug
Konkave / Konvexe Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Sa 22.11.2008
Autor: leduart

Hallo
faellt dir nix auf? Quadrate von irgendwas sind immer [mm] \ge [/mm] 0
[mm] e^x [/mm] ist auch immer >0
Gruss leduart

Bezug
                                
Bezug
Konkave / Konvexe Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 22.11.2008
Autor: Marry2605

Achso, also hab ich viel zu kompliziert Gedacht.
Somit wäre das ganze für alle Zahlen >= 0 ist also immer konvex!

danke für die hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]