matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKonjugierten nicht in O_K
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Konjugierten nicht in O_K
Konjugierten nicht in O_K < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugierten nicht in O_K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mi 09.01.2013
Autor: mugglematts

Sei L/K eine algebraische Körpererweiterung ist mit, K=Quot(A) und B der ganze Abschluss von A in L für A ganz-abgeschlossener Integritätsring.
Es gilt
Ist [mm] x\in [/mm] B => [mm] \sigma(x) [/mm] sind ganz über A, denn:
Da [mm] x\in [/mm] B gibt es ein normiertes Polynom aus A[X] mit f(x)=0, insbesondere auch für [mm] f(\sigma(x))=0 [/mm] für [mm] \sigma [/mm] eine K_Einbettung. Wegen [mm] \sigma f(x)=f(\sigma(x))=0 [/mm] sind somit auch die Konjugierten Nullstellen eines normierten Polynoms, da die Koeffizienten aus A erhalten bleiben .

Nun bin ich über dieses hier gestolpert:
[mm] x\in [/mm] B so sind die [mm] \sigma(x) [/mm] nicht unbedingt in B, aber können ganz über A sein. Meine Frage:
Was wäre ein Beispiel/Gegenbeispiel, dass [mm] \sigma(x) [/mm] nicht in B liegt
(vllt sogar mit [mm] A=\IZ, B=O_K, K=\IQ [/mm] und [mm] L=\IQ(\wurzel{d}) [/mm] quad. Erweiterung)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konjugierten nicht in O_K: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Do 10.01.2013
Autor: felixf

Moin!

> Sei L/K eine algebraische Körpererweiterung ist mit,
> K=Quot(A) und B der ganze Abschluss von A in L für A
> ganz-abgeschlossener Integritätsring.
>  Es gilt
>  Ist [mm]x\in[/mm] B => [mm]\sigma(x)[/mm] sind ganz über A, denn:

>  Da [mm]x\in[/mm] B gibt es ein normiertes Polynom aus A[X] mit
> f(x)=0, insbesondere auch für [mm]f(\sigma(x))=0[/mm] für [mm]\sigma[/mm]
> eine K_Einbettung. Wegen [mm]\sigma f(x)=f(\sigma(x))=0[/mm] sind
> somit auch die Konjugierten Nullstellen eines normierten
> Polynoms, da die Koeffizienten aus A erhalten bleiben .
>  
> Nun bin ich über dieses hier gestolpert:
>  [mm]x\in[/mm] B so sind die [mm]\sigma(x)[/mm] nicht unbedingt in B, aber
> können ganz über A sein. Meine Frage:
>  Was wäre ein Beispiel/Gegenbeispiel, dass [mm]\sigma(x)[/mm] nicht
> in B liegt

Nun, eigentlich ist das ganz einfach: man nimmt eine Koerpererweiterung $L/K$, die nicht normal ist, also kein Zerfaellungskoerper ist. Dann gibt es einen $K$-Automorphismus [mm] $\sigma$ [/mm] vom alg. Abschluss [mm] $\overline{K}$, [/mm] der mind. ein Element von $L$ ausserhalb von $L$ abbildet. Dieses Element kannst du passend mit einem ganzen Element [mm] $\neq [/mm] 0$ aus $K$ multiplizieren, so dass das Element selber ganz ist; es wird dann vom Automorphismus immer noch auf etwas ausserhalb $L$ abgebildet.

>  (vllt sogar mit [mm]A=\IZ, B=O_K, K=\IQ[/mm] und [mm]L=\IQ(\wurzel{d})[/mm]

Du meinst $B = [mm] O_L$, [/mm] oder?

> quad. Erweiterung)

Mit quadratischen Erweiterungen klappt das nicht, die sind immer normal.

Aber pnimm $A = [mm] \IZ$, [/mm] $K = [mm] \IQ$, [/mm] $L = [mm] \IQ(\sqrt[3]{2})$ [/mm] und $B = [mm] O_L$. [/mm] Sei [mm] $\sigma$ [/mm] der Homomorphismus $L [mm] \to \IC$, [/mm] der [mm] $\alpha [/mm] := [mm] \sqrt[3]{2}$ [/mm] auf [mm] $\beta [/mm] := [mm] \exp(2 \pi [/mm] i/3) [mm] \sqrt[3]{2} \not\in \IR$ [/mm] abbildet. Dann sind [mm] $\alpha$ [/mm] und [mm] $\beta$ [/mm] ganz ueber [mm] $\IZ$, [/mm] jedoch ist [mm] $\beta [/mm] = [mm] \sigma(\alpha) \not\in O_L$, [/mm] da [mm] $\beta$ [/mm] kein Element von $L$ ist.

LG Felix


Bezug
                
Bezug
Konjugierten nicht in O_K: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Do 10.01.2013
Autor: mugglematts

Ja [mm] O_L [/mm] war gemeint.

Danke, das hat geholfen :)

Bezug
                
Bezug
Konjugierten nicht in O_K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Do 10.01.2013
Autor: mugglematts

Eine Frage ergibt sich doch noch:
Ist dir das mit der normalen Körpererweiterung aus einem bestimmten Grund eingefallen? Denn es gibt für ganz abgeschlossene Ringe in ihrem Quotientenkörper die Bezeichnung Normalisierung .

Bezug
                        
Bezug
Konjugierten nicht in O_K: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Fr 11.01.2013
Autor: felixf

Moin!

> Eine Frage ergibt sich doch noch:
>  Ist dir das mit der normalen Körpererweiterung aus einem
> bestimmten Grund eingefallen? Denn es gibt für ganz
> abgeschlossene Ringe in ihrem Quotientenkörper die
> Bezeichnung Normalisierung .

Die Normalisierung von (vorher) noch nicht ganzabgeschlossenen Ringen im Quotientenkoerper hat nichts mit normalen []Koerpererweiterungen zu tun.

Bei normalen Koerpererweiterungen geht es um die Frage, ob die Konjugierten (in einem alg. Abschluss) von Elementen des Erweiterungskoerper wieder im Erweiterungskoerper liegen. Die normalen Koerpererweiterungen sind genau die, bei denen das immer der Fall ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]