matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKonjugierte Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Konjugierte Matrix
Konjugierte Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugierte Matrix: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:31 So 27.06.2010
Autor: Irina09

Aufgabe
Ich will zeigen, dass für eine quadratische Matrix A mit komplexen Einträgen gilt, dass [mm] \overline{A^{-1}} [/mm] * [mm] \overline{A} [/mm] = E gilt.

[mm] \overline{A} [/mm] : Konjugierte Matrix von A
[mm] A^{-1} [/mm] : Inverse Matrix zu A

Hallo,

ich bin mein Skript zur Linearen Algebra durchgegangen und habe diese Aussage ohne Beweis vorgefunden. Ich möchte sie nun als persönliche Übung formal beweisen und stecke fest:

A = [mm] (\alpha)_{i,j} [/mm] mit i,j = 1, ..., n und [mm] \alpha \in \IC [/mm]
[mm] \overline{A} [/mm] = [mm] (\overline{\alpha})_{i,j} [/mm]

Wie mache ich das nun weiter?

Vielen Dank!

Gruß
Irina

        
Bezug
Konjugierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 So 27.06.2010
Autor: wieschoo

Was gibt es da zu beweisen?
[mm] $AA^{-1}=E=\overline{E}=\overline{AA^{-1}}=\overline{A}\cdot\overline{A^{-1}}$ [/mm]
Der letzte Schritt erklärt sich über die Eigenschaft der komplexen Zahlen [mm] $x,y\in\IC, \overline{x}\cdot\overline{y}=\overline{xy}$ [/mm]

Bezug
                
Bezug
Konjugierte Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 So 27.06.2010
Autor: felixf

Moin!

> Was gibt es da zu beweisen?
>  
> [mm]AA^{-1}=E=\overline{E}=\overline{AA^{-1}}=\overline{A}\cdot\overline{A^{-1}}[/mm]
>  Der letzte Schritt erklärt sich über die Eigenschaft der
> komplexen Zahlen [mm]x,y\in\IC, \overline{x}\cdot\overline{y}=\overline{xy}[/mm]

...und [mm] $\overline{x} [/mm] + [mm] \overline{y} [/mm] = [mm] \overline{x + y}$. [/mm]

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]