matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKonjugier Komplex
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Konjugier Komplex
Konjugier Komplex < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugier Komplex: Frage
Status: (Frage) beantwortet Status 
Datum: 20:41 Sa 30.10.2004
Autor: Christinchen

Hallo!

Ich hab ein Riesenproblem, ich soll zeigen, dass für zwei komplexe zahlen z1 und z2 stehts
----- = ---  ---
z1*z2 = z1 * z2

gilt.

ich wurschtel da schon seit tagen rum und komme irgendwie nicht drauf!

Kann mir jemadn helfen?

Vielen dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konjugier Komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Sa 30.10.2004
Autor: andreas

hi Christinchen

das ist wirklich nur ausrechnen. das einzige was man benötigt ist die definition der multiplikation zweier komplexer zahlen, so wie die der konjugation.

sei [m] z_1 = (x_1, y_1), \, z_2 = (x_2, y_2) \in \mathbb{C} [/m]. dann gilt:

[m] \overline{z_1 \cdot z_2} = \overline{(x_1, y_1) \cdot (x_2, y_2)} = \overline{(x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)} = (x_1x_2 - y_1y_2, - x_1y_2 - x_2y_1) [/m]

jetzt berechnen andereseits mal [m] \overline{z_1} \cdot \overline{z_2} [/m] und vergeliche mit dem ende der letzten zeile und du wirst sehen, dass das selbe herauskommt.

oder sind dir die definitionen nich klar?
wenn du nicht weiterkommen solltest, melde dich nochmal.

grüße
andreas



Bezug
                
Bezug
Konjugier Komplex: Frage
Status: (Frage) beantwortet Status 
Datum: 07:53 So 31.10.2004
Autor: Christinchen

Hallo

also beim ersten Teil habe ich das so gemacht! Das Problem ist der zweite :o)

[mm] \overline{z_1*z_2} = \left( x_1+y_1*i \right)*\left( x_2+y_2*i \right) = ac + ad*i + bc*i + bd*i^2 = ac + ad + bc*i - bd [/mm]

so jetzt habe ich die Zahl in imaginaer und real Teil aufgeteilt:

[mm]ac + ad + bc*i - bd = ac - bd + i*\left( ad + bc\right) [/mm]

dann habe ich die Zahlen konjugiert:

[mm]ac - bd + i*\left( ad + bc\right) = ac - bd - i*\left( ad + bc\right) [/mm]

Nun weiß ich aber nicht wie ich den zweiten teil machen muß!

[mm] \overline{z_1}* \overline{z_2}[/mm]

Mir ist schon klar das ich beides einzelnen konjugieren muß und dann muß ich es umformen, damit das gleiche dasteht! Aber wie ??

Danke für die Hilfe

Christinchen

Bezug
                        
Bezug
Konjugier Komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 So 31.10.2004
Autor: andreas

hi Christinchen

> [mm]\overline{z_1*z_2} = \left( x_1+y_1*i \right)*\left( x_2+y_2*i \right) = ac + ad*i + bc*i + bd*i^2 = ac + ad + bc*i - bd[/mm]
>  
>
> so jetzt habe ich die Zahl in imaginaer und real Teil
> aufgeteilt:
>  
> [mm]ac + ad + bc*i - bd = ac - bd + i*\left( ad + bc\right)[/mm]
>  
>
> dann habe ich die Zahlen konjugiert:
>  
> [mm]ac - bd + i*\left( ad + bc\right) = ac - bd - i*\left( ad + bc\right) [/mm]

da fehlen zwar ein paar konjugiert-zeichen, aber ich denke das weißt du selbst. das ergebnis stimmt aber, also [m] \overline{z_1 \cdot z_2} = (ac - bd) - i (ad + bc) [/m].



> Nun weiß ich aber nicht wie ich den zweiten teil machen
> muß!
>
> [mm]\overline{z_1}* \overline{z_2}[/mm]
>  
> Mir ist schon klar das ich beides einzelnen konjugieren muß
> und dann muß ich es umformen, damit das gleiche dasteht!
> Aber wie ??

also: zuerst konjugieren und dann multiplizieren ergibt: [m] \overline{z_1} \cdot \overline{z_2} = \overline{x_1 + iy_1} \cdot \overline{x_2 + i y_2} = (x_1 - iy_1) \cdot (x_2 - iy_2) [/m]
[m]= x_1 x_2 - ix_1 y_2 - ix_2 y_1 + i^2 y_1 y_2 = x_1 x_2 - y_1 y_2 - i(x_1 y_2 + x_2 y_1) [/m]



und jetzt führe die rechnung mal mit [m] x_1 = a,\; x_2 = b, \; y_1 = c, \; y_2 = d [/m] durch (sorry, mein fehler, ich habe da nicht geschaut, wie du deinen real- bzw. imaginärteil genannt hast) und vergeliche dann das ergebnis mit dem von oben. und?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]