matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKongruenzrelation beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Kongruenzrelation beweisen
Kongruenzrelation beweisen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzrelation beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:51 So 06.01.2013
Autor: Neongelb

Aufgabe
Sei m [mm] \in \IN, [/mm] m > 1, b [mm] \in \IZ. [/mm] Zeigen Sie:

Falls es ein a [mm] \in \IZ [/mm] gibt mit a [mm] \* [/mm] b [mm] \equiv [/mm] 1 (mod m), dann gibt es auch ein a' [mm] \in \IN, [/mm] a' < m mit a' [mm] \* [/mm] b [mm] \equiv [/mm] 1 (mod m)

Hi,
ich kann die Aussage zwar nachvollziehen, jedoch fehlt mir jeder Ansatz diese zu beweisen. Kann mit da vielleicht jemand weiterhelfen?

Danke schon mal,
Grüße

        
Bezug
Kongruenzrelation beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 06.01.2013
Autor: reverend

Hallo Neongelb,

in der Restklassenrechnung ist das eine triviale Aussage. Trotzdem hilft Dir das auch, einen Ansatz zu finden:

> Sei m [mm]\in \IN,[/mm] m > 1, b [mm]\in \IZ.[/mm] Zeigen Sie:
>  
> Falls es ein a [mm]\in \IZ[/mm] gibt mit a [mm]\*[/mm] b [mm]\equiv[/mm] 1 (mod m),
> dann gibt es auch ein a' [mm]\in \IN,[/mm] a' < m mit a' [mm]\*[/mm] b [mm]\equiv[/mm]
> 1 (mod m)

>

>  Hi,
>  ich kann die Aussage zwar nachvollziehen, jedoch fehlt mir
> jeder Ansatz diese zu beweisen. Kann mit da vielleicht
> jemand weiterhelfen?

Man kann die Aussagen ja auch anders formulieren:
Falls es [mm] a,k\in\IZ [/mm] gibt, so dass $a*b=1+k*m$, dann gibt es auch [mm] $a'\in\IN, [/mm] a'<m$ und [mm] k'\in\IZ, [/mm] so dass $a'*b=1+k'*m$ ist.

Das sieht nun nicht viel anders aus, hat aber den Vorteil, dass hier echte Gleichungen stehen und keine Kongruenzen oder Äquivalenzen.

Grüße
reverend


Bezug
                
Bezug
Kongruenzrelation beweisen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:15 Di 08.01.2013
Autor: Neongelb

Okay,
mein Lösungsansatz

umformen der Gleichungen:
1:   a [mm] \* [/mm] b = k [mm] \* [/mm] m + 1 [mm] \equiv [/mm] a [mm] \* [/mm] b - K * m = 1
2:   a' [mm] \* [/mm] b = k [mm] \* [/mm] m + 1 [mm] \equiv [/mm] a' [mm] \* [/mm] b - K * m = 1

um die Gleichung 1 zu erfüllen müssen linke und Rechte Seite den selben ggT haben. Dieser kann also nur 1 sein.

Nun weiß ich nicht wirklich wie ich weiter machen soll...


Grüße



Bezug
                        
Bezug
Kongruenzrelation beweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 10.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]