matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonforme Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Konforme Abbildungen
Konforme Abbildungen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konforme Abbildungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:06 Fr 26.08.2011
Autor: Harris

Hallo liebe Leute!

Erst mal vielen Dank für die ganzen Hilfestellungen, die Ihr mir die letzten Wochen hier gegeben habt. Ich habe gerade mein Examen geschrieben und es lief ganz gut.

Bei einer Aufgabe bin ich mir nicht sicher, dass ich sie richtig gelöst habe. Und deswegen wollte ich fragen, was ihr von meinem Lösungsweg haltet:


Sei G einfach zusammenhängend und $f,g$ biholomorphe Abbildungen von $G$ auf $G$. Weiterhin gelte für [mm] $a\neq b\in [/mm] G$, dass $f(a)=g(a)$ und $f(b)=g(b)$ gilt. Zeigen Sie, dass $f=g$

Meine Antwort:
Da G einfach zusammenhängend ist, gibt es eine biholomorphe $j$ Abbildung auf den Einheitskreis. [mm] \varphi:G\rightarrow [/mm] E$
Dieser liefert einen Isomorphismus von $Aut(G)$ nach $Aut(E)$ mittels
[mm] $\varphi(h)=j\circ [/mm] h [mm] \circ j^{-1}$, [/mm] denn es ist ein Homomorphiscmus, da
[mm] $\varphi(h)\circ\varphi(g)=j\circ [/mm] h [mm] \circ j^{-1}\circ j\circ [/mm] g [mm] \circ j^{-1}=\varphi(h\circ [/mm] g)$ und bijektiv, da diese Abbildungen insbesondere bijektiv sind.

Es genügt also, die Aussage für den Einheitskreis zu beweisen.

Die Automorphismengruppe des Einheitskreises ist gegeben durch
[mm] $Aut(E)=\{e^{it}\frac{z-\omega}{\overline{\omega}z-1} : t\in\IR, \omega\in E\} [/mm] und diese wird erzeugt durch [mm] $e^{it}z$ [/mm] (Drehungen um den Ursprung) und [mm] \frac{z-\omega}{\overline{\omega}z-1} [/mm] (Verschieben von [mm] \omega [/mm] auf den Ursprung).

Für [mm] t\in (0,2\pi) [/mm] gilt
[mm] $e^{it}z=z \gdw [/mm] z=0$.
Diese Abbildung hat also genau einen Fixpunkt.

Für [mm] $\omega\neq [/mm] 0$ gilt
[mm] \frac{z-\omega}{\overline{\omega}z-1}=z [/mm]
[mm] \gdw z-\omega=z^2\overline{\omega}-z [/mm]
[mm] \gdw z^2\overline{\omega}-2z+\omega=0 [/mm]
[mm] \gdw z^2-\frac{2z}{\overline{\omega}}+\frac{\omega}{\overline{\omega}}=0 [/mm]

(Frage für zwischendurch: Kann ich hier die Mitternachtsformel mit dem Hauptzweig der Wurzel anwenden?!?)

In $E$ gilt nun
Sei nun [mm] \alpha(z)=z^2-\frac{2z}{\overline{\omega}}+\frac{\omega}{\overline{\omega}} [/mm] und [mm] \beta(z)=-\frac{2z}{\overline{\omega}} [/mm]

Dann gilt [mm] |\alpha(z)-\beta(z)|_{\partial E}=|z^2+\frac{\omega}{\overline{\omega}}|_{\partial E}\leq|z^2|_{\partial E}+|\frac{\omega}{\overline{\omega}}|\leq [/mm] 2 [mm] \leq 2|\frac{1}{\overline{\omega}}|\leq |\beta(z)|_{\partial E} [/mm]

Also haben [mm] \alpha [/mm] und [mm] \beta [/mm] im Einheitskreis gleich viele Nullstellen nach dem Satz von Rouché und da [mm] \beta [/mm] nur eine hat, hat [mm] \alpha [/mm] auch nur eine.

Somit besitzt obige Abbildung genau einen Fixpunkt.

a',b' sei das Bild von [mm] \varphi. [/mm]

Da nun $f(a')=g(a')$ und $f(b')=g(b')$ ist, gilt
[mm] $g^{-1}\circ [/mm] f (a')=a'$ und [mm] $g^{-1}\circ [/mm] f(b')=b'$ und somit hat die Abbildung [mm] $g^{-1}\circ [/mm] f$ zwei Fixpunkte. Die einzige Abbildung, die mehr als einen Fixpunkt hat, ist die Identität. Somit gilt [mm] $g^{-1}f=id\gdw [/mm] f=g$.

        
Bezug
Konforme Abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 So 28.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]