matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsKonfidenzintervall, Näherung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik/Hypothesentests" - Konfidenzintervall, Näherung
Konfidenzintervall, Näherung < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall, Näherung: Frage zu Text im Mathebuch
Status: (Frage) beantwortet Status 
Datum: 00:02 Do 18.01.2018
Autor: Mathemurmel

Aufgabe
Konfidenzintervall,  Näherungsverfahren zur Bestimmung von Konfidenzintervallen  
Aufgabe im Buch: Bestimmung von Anteilen in der Gesamtheit  
Bei einer Befragung von 500 zufällig (repräsentativ) ausgewählten Personen einer Großstadt gaben 273 an, bei einer bevorstehenden Oberbürgermeister-Direktwahl den bisherigen Amtsinhaber wählen zu wollen.
Kann der Kandidat auf die Mehrheit der Stimmen hoffen?
Bestimme dazu alle Anteile p in der Gesamtheit, in deren 95%-Umgebung das Stichprobenergebnis liegt.
In der im Buch angegebenen Lösung wird das Konfidenzintervall berechnet:
500p - 1,96 ⋅ √ ¯(500 ⋅p ⋅(1-p)) = 273  bzw.  500p + 1,96 ⋅ √ ¯(500 ⋅p ⋅(1-p)) = 273
1,96 ⋅ √ ¯(500 ⋅p ⋅(1-p)) = |273 - 500p|    Quadrieren:
1921p – 1921 [mm] p^2 [/mm] = 74529 – 273000p + [mm] 250000p^2 [/mm]
[mm] 251921p^2 [/mm] – 274921p = - 74529
……..    p = 0,5891   oder   p = 0,5021
Runden zur sicheren Seite   p_min = 0,503   bzw.  p_max = 0,589
(2) Näherungsverfahren zur Bestimmung von Konfidenzintervallen  
Unter bestimmten Voraussetzungen lässt sich das o.a. Rechenverfahren verkürzen: Das Rechenverfahren ist aufwändig, weil p auf beiden Seiten der Gleichung auftritt. Falls  0,3 < p < 0,7 ist, kann man den Wert von p auf der rechten Seite der Gleichung (unter der Wurzel) durch den Wert von p auf der rechten Seite der Gleichung (unter der Wurzel) durch den Wert der relativen Häufigkeit X/n annähern, d.h. man ersetzt auf der rechten Seite der Gleichung die Standardabweichung σ durch einen Näherungswert.
Beispiel: n = 500;  X = 273;  X/n = 0546,   also   σ ≈ √ ¯(500 ⋅0,546 ⋅0,454)
Die Rechnung reduziert sich dann auf die Lösung einer einfachen Betragsgleichung:
|273 - 500p| = 1,96 ⋅ √ ¯(500 ⋅0,546 ⋅0,454),     d.h.  |273 - 500p| = 21,82, also
500p = 273 + 21,82   oder   500p = 273 - 21,82,  
d.h.   p_max = 0,5896   bzw.   p_min = 0,5024
zur sicheren Seite runden  gleiche Lösungen wie oben beim ausführlichen (exakten) Verfahren.

Meine Frage:  Für das Näherungsverfahren wird vorausgesetzt:  0,3 < p < 0,7.
p ist aber doch gar nicht bekannt, wie kann ich dann prüfen, ob es zwischen 0,3 und 0,7 liegt?

        
Bezug
Konfidenzintervall, Näherung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Fr 19.01.2018
Autor: Eisfisch

Meine Frage:  Für das Näherungsverfahren wird vorausgesetzt:  0,3 < p < 0,7.
p ist aber doch gar nicht bekannt, wie kann ich dann prüfen, ob es zwischen 0,3 und 0,7 liegt?

meine Antwort: Nö, kannste nicht.

Aber die Näherungslösung ist nur dann einigermaßen als Näherungslösung genähert gültig, wenn p im angegebenen Bereich liegt. Mit den Werten k=273 und n=500 kommt p=0,546 heraus.
Wie groß (oder stark) kann dieser Wert (von rund p=0,5) noch abweichen? Nach unten nicht, nach oben bis 1,0 (falls alle anderen  noch zu fragenden 227 Leute auch mit JA stimmen würden).

Die in 2) genannate Approximation entspricht der "Einfache Approximation durch die Normalverteilung", vgl.Wkipedia, s.u.  Dort wird die Näherung begleitet durch die Forderung:

Wenn diese Formel verwendet wird, sollte k [mm] \ge [/mm] 50  und n − k [mm] \ge [/mm] 50 sein.
Das ist mit k=273>50 und n-k=227>50 erfüllt. Vielleicht ist die Forderung aus Wiki besser (i.S.v. klarer) als die Angabe in deinem Mathebuch?


Q: Einfache Approximation durch die Normalverteilung  bei: Konfidenzintervall für die Erfolgswahrscheinlichkeit der Binomialverteilung  in: []https://de.wikipedia.org/wiki/Konfidenzintervall_f%C3%BCr_die_Erfolgswahrscheinlichkeit_der_Binomialverteilung




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]