matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKonfidenzintervall?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Konfidenzintervall?
Konfidenzintervall? < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall?: Muss man das hier anwenden?
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 21.07.2012
Autor: bandchef

Aufgabe
Ein Gerät enthält ein elektronisches Element, dessen Funktionieren für die Arbeit des Gerätes erforderlich ist. Fällt das Element aus, so wird es sofort durch ein Reserveelement ersetzt — dieses ggf. durch ein weiteres Reserveelement usw. Aufgrund langjähriger Erfahrung weiß man, daß die zufälligen Lebensdauern der einzelnen Elemente als stochastisch unabhängige und identisch verteilte Zufallsvariablen mit Erwartungswert μ = 50 Std. und Standardabweichung σ = 10 Std. modelliert werden können.
Bestimmen Sie (approximativ) die kleinstmo ̈gliche Anzahl von Reserveelementen, die erforderlich ist, um mit einer Mindestwahrscheinlichkeit von 0,99 eine ununterbrochene Arbeit des Gera ̈tes u ̈ber einen Zeitraum von 5000 Stunden zu garantieren.

Ich hab einige Probleme mit der Aufgabe.

1. Muss ich hier das Konfidenzintervall anwenden? Wenn ja dann hätt ich das so gemacht:

Aus der Angabe hab ich das hier abgelesen:
$1 - [mm] \alpha [/mm] = 0,99$
[mm] $\alpha [/mm] = 0,01$
[mm] $\frac{\alpha}{2} [/mm] = 0,005§
n = 5000h
[mm] $\mu [/mm] = 50h$
[mm] $\sigma [/mm] = 10h$

[mm] $P\left(\overline{x} - \frac{\sigma}{\sqrt{n}} \cdot Z_{1-\frac{\alpha}{2}} \leq \mu \leq \overline{x} + \frac{\sigma}{\sqrt{n}} \cdot Z_{1-\frac{\alpha}{2}}\right) [/mm] = 1 - [mm] \alpha$ [/mm]


[mm] $P\left(\overline{x} - \frac{10h}{\sqrt{5000h}} \cdot Z_{1-0,005} \leq \mu \leq \overline{x} + \frac{10h}{\sqrt{5000h}} \cdot Z_{1-0,005}\right) [/mm] = 0,99$

[mm] $P\left(\overline{x} - 0,1414 \cdot 0,8401 \leq \mu \leq \overline{x} + 0,1414 \cdot 0,8401\right) [/mm] = 0,99$


Was aber ist aus meiner Aufgabe nun [mm] \overline{x}? [/mm]

        
Bezug
Konfidenzintervall?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:16 So 22.07.2012
Autor: luis52

Moin bandchef,

du bist vollkommen auf dem Holzweg. Gesucht ist eine kleinstmoegliche Anzahl!

Betrachte die Lebensdauern [mm] $X_i$ [/mm] von n Reserveelementen. Bezeichnet [mm] $X_0$ [/mm] die Lebensdauer des Anfangselements, so ist n so zu bestimmen, dass [mm] P(X_0+X_1+\dots+X_n\ge5000)\ge0.99$. [/mm]

vg Luis

Bezug
                
Bezug
Konfidenzintervall?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 So 22.07.2012
Autor: bandchef

Erstmal danke für deine Antwort!

Leider weiß ich jetzt auch mit deinem Ansatz nicht recht weiter. Es sind ja Erwartungswert und Standardabweichung gegeben. Muss ich da jetzt irgendwie mit der Standardnormalverteilung arbeiten?

Wenn ja, wie geht das dann hier? Aus der Angabe könnte man ja das rauslesen:

[mm] $x_i \sim [/mm] N(50h; [mm] (10h)^2)$ [/mm]

Stimmt das so?

Bezug
                        
Bezug
Konfidenzintervall?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 So 22.07.2012
Autor: luis52

Richtig, [mm] $X_i\sim N(50,10^2)$ [/mm] fuer [mm] $i=0,1,\dots,n$. [/mm] Und weisst  du dann ueber die Verteilung von [mm] $X_0+X_1+\dots+X_n$? [/mm]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]