matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Konfidenzintervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Konfidenzintervall
Konfidenzintervall < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 19.01.2009
Autor: Wurzel2

Aufgabe
Bei einer Prüfung gibt es eine unbekannte Verteilung [mm] P(X=i)=p_i, [/mm] i=1,...,5. Es interessiert E[X], die Varianz beträgt höchstens 0,5. 25 Kandidaten werden unabhängig geprüft mit Noten: Eine eins haben 2 Leute, eine zwei haben 7 Leute, eine drei haben 4,eine vier haben 6 und eine fünf haben 6 Leute.
Konstruiere mit Hilfe von Tschebyschev ein Konfidenzintervall für E[X] um das Mittel [mm]\bar x[/mm]=[mm]\sum[/mm][mm] x_i/25 [/mm] zum Niveau [mm]\alpha[/mm]=0,25. Ist E[X]=3 noch plausibel bei diesem [mm]\alpha[/mm]?

Ich habe zu dieser Aufgabe folgende Formel benutzt:
C(x)=[ [mm]\bar x[/mm] - [mm]\epsilon[/mm] ; [mm]\bar x[/mm] + [mm]\epsilon[/mm] ] Wobei [mm]\epsilon[/mm] = [mm]\sigma[/mm] / [mm]\wurzel{n * \alpha }[/mm] ist.
Da die Varianz höchstens 0,5 sein darf und die Varianz=[mm]\sigma^2[/mm] ist habe ich daraus einfach die Wurzel gezogen um [mm]\sigma[/mm] zu erhalten. letztendlich ist mein Intervall C(x)=(0,316;0,884)
Ist dies so richtig gemacht?

        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Di 20.01.2009
Autor: steffenhst

Hallo,

>  Ich habe zu dieser Aufgabe folgende Formel benutzt:
> C(x)=[ [mm]\bar x[/mm] - [mm]\epsilon[/mm] ; [mm]\bar x[/mm] + [mm]\epsilon[/mm] ] Wobei
> [mm]\epsilon[/mm] = [mm]\sigma[/mm] / [mm]\wurzel{n * alpha }[/mm] ist.
>  Da die Varianz höchstens 0,5 sein darf und die
> Varianz=[mm]\sigma^2[/mm] ist habe ich daraus einfach die Wurzel
> gezogen um [mm]\sigma[/mm] zu erhalten.

nicht ganz richtig, zumindest wenn ich so früh nichts auf den Augen haben. Du nutzt ja folgende Variante der T.-Ungleichung: P ({ w [mm] \in \Omega [/mm] | [mm] |\bruch{1}{n} \summe_{i=1}^{n} (X_i(w) [/mm] - [mm] E(X_i) [/mm] | [mm] \ge \epsilon [/mm] }) [mm] \le \bruch{Var(X_i)}{n \epsilon^2}. [/mm] Dabei sind die [mm] X_i [/mm] unabhängig verteilt mit [mm] E(X_i) [/mm] = a und der Varianz [mm] Var(X_i). [/mm] Man muss zunächst [mm] \epsilon [/mm] bestimmen und das hast du richtig gemacht (ist [mm] \approx [/mm] 0.28, hast du das auch?). Wie kommst du jetzt aber auf dein Intervall, wo das Mittel doch 3,28 ist?

Grüße, Steffen




Bezug
                
Bezug
Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Di 20.01.2009
Autor: Wurzel2

Ja, für [mm]\epsilon[/mm] habe ich auch [mm]\approx[/mm]0,28 raus.
Würde es denn als Ergebnis reichen wenn ich schreiben würde mein Intervall ist C(x)= [ [mm]\bar x[/mm] - 0,28 ; [mm]\bar x[/mm] + 0,28 ] ?
Und wie soll ich die Frage verstehen, ob E[X]=3 noch plausibel ist?

Bezug
                        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 20.01.2009
Autor: steffenhst


> Ja, für [mm]\epsilon[/mm] habe ich auch [mm]\approx[/mm]0,28 raus.
>  Würde es denn als Ergebnis reichen wenn ich schreiben
> würde mein Intervall ist C(x)= [ [mm]\bar x[/mm] - 0,28 ; [mm]\bar x[/mm] +
> 0,28 ] ?

Aber du kannst doch den Mittelwert bestimmen? (3.28)

>  Und wie soll ich die Frage verstehen, ob E[X]=3 noch
> plausibel ist?

ob E[X] = 3 im KI liegt und damit bei der angegebenen Wahrscheinlichkeit als plausibles Ergebnis möglich ist.
Grüße, Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]