matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabKonditionszahlen und GLS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Matlab" - Konditionszahlen und GLS
Konditionszahlen und GLS < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konditionszahlen und GLS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:10 Fr 21.07.2006
Autor: Nette20

Aufgabe
a) Es sei u: [mm] \IR \to \IR [/mm] mindestens sechsmal stetig differenzierbar. Für festes t [mm] \in \IR [/mm] zeige man:
u´´´´(t) = [mm] \bruch{u(t+2h) - 4u(t+h)+6u(t)-4u(t-h)+u(t-2h)}{h^{4}} [/mm] + [mm] O(h^{2}) [/mm]

Hierzu kann man die Taylorentwicklungen von u(t [mm] \pm [/mm] h) und u(t  [mm] \pm [/mm] 2h) heranziehen.

Folgendes Randwertproblem soll nun auf zwei verschiedene Weisen diskretisiert werden:
y´´´´ - y = 0, y(0) = y(1) = 1, y'(0) = y'(1) = 0.
Hierzu definieren wir mit einer gegebenen Schrittweite h = 1/n für j=-1,0,1,...,n+1 die Stützstellen [mm] t_{j} [/mm] = jh [mm] \in [/mm] [-h, 1+h] und verfahren folgendermaßen:
1) Zum einen ersetzen wir die vierte Ableitung durch die Differenzenformel aus (a) und erhalten so eine Differenzengleichung für die Näherung [mm] u_{j} [/mm] an [mm] y(t_{j}) [/mm] in [mm] t_{1},...,t_{n-1}. [/mm] Als Randbedingungen wählen wir [mm] u_{0} [/mm] = [mm] u_{n} [/mm] = 1, [mm] u_{1} [/mm] = [mm] u_{-1} [/mm] und [mm] u_{n+1} [/mm] = [mm] u_{n-1}. [/mm]
2) Zum anderen schreiben wir die Differentialgleichung vierter Ordnung als vierdimensionales System erster Ordnung in der Form
Y' = MY mit Y = [mm] (Y^{(1)}, Y^{(2)}, Y^{(3)}, Y^{(4)} )^{T} [/mm] = (y, y', y´´, [mm] y´´´)^{T} [/mm] und den Randwerten [mm] Y^{(1)} [/mm] (0) = [mm] Y^{(1)} [/mm] (1) = 1, [mm] Y^{(2)} [/mm] (0) = [mm] Y^{(2)} [/mm] (1) = 0.
Dieses ersetzen wir (gemäß der impliziten Trapezregel) durch das diskrete Schema [mm] U_{j} [/mm] - [mm] U_{j-1} [/mm] = h/2 [mm] M(U_{j} [/mm] + [mm] U_{j-1}) [/mm] mit den Randbedingungen [mm] U_{0}^{(1)} [/mm] = [mm] U_{n}^{(1)} [/mm] = 1, [mm] U_{0}^{(2)} [/mm] = [mm] U_{n}^{(2)} [/mm] = 0.

b) Für [mm] u_{1},...,u_{n-1} [/mm] und [mm] \vektor{ U_{0}^{(3)} \\ U_{0}^{(4)} }, U_{1},...,U_{n-1}, \vektor{ U_{n}^{(3)} \\ U_{n}^{(4)} } [/mm] stelle man jeweils die entsprechenden GLS auf.

c)Bestimmen Sie jeweils für n= 10,20,40,80 (mit Matlab) die Konditionszahlen der beiden GLS aus (b). Wie verhalten sich die Konditionszahlen? Wie erklären Sie sich, dass das eine System wesentlich besser konditioniert ist als das andere? (hinweis: Verwenden Sie bei Bedarf die MATLAB-Funktion toeplitz und kron zum Aufstellen der Matrizen).

d) Lösen Sie (mit Matlab) für beide Diskretisierungen die GLS und vergleichen Sie mit der exakten Lösung von 1). Stellen Sie den Fehler graphisch dar.

Hallo!
Da zur Lösung von c) und d) die Aufgabenteile a) und b) benötigt werden, habe ich sie mit eingestellt.
Ich kann mit Matlab nicht umgehen und weiß daher nicht, wie ich das Berechnen kann.
Danke für Eure Hilfe.
Nette

        
Bezug
Konditionszahlen und GLS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 27.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]