matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKondition einer Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Kondition einer Matrix
Kondition einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kondition einer Matrix: Idee
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 24.05.2008
Autor: lani

Aufgabe
1 1
1 0.99

berechnen der kondition

hallo ich soll die kondition einer matrix berechnen..

diese ist ja cond(A) = ||A||*||A(Transponiert)||

und die norm berechnet sich aus der wurzel von A * A transponiert und davon den max eigenwert.

nun hänge ich!
A*A(transponiert) ist bei mir : 2    1,99
                                1.99 1.9801

wenn ich jetzt die eigenwerte berechne muss ich ja die determinante der matrix berechnen (A-lamda E) und komme auf ein polynom : [mm] lamda^2 [/mm] - 1,9801lamda + 7,9203
um nun die eigenwerte zu bekommen müßte ich dieses polynom 0 setzen...nur kommt bei mir da unter der wurzel eine minuszahl raus...

hat irgendwer eine idee wo mein fehler liegen könnte??

mfg

ch habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

        
Bezug
Kondition einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Sa 24.05.2008
Autor: madde_dong

Hallo lani,

zuerst mal ist die Kondition einer Matrix [mm] \kappa(A) =\parallel A\parallel \parallel A^{-1} \parallel [/mm]

Für die Spektralnorm ist es ganz richtig, du brauchst den betragsgrößten Eigenwert von [mm] AA^T. [/mm] Da diese Matrix symmetrisch ist, sind die Eigenwerte reell, ein Minus unter der Wurzel kann also nicht sein.
Mit deinem [mm] AA^T [/mm] bin ich noch einverstanden.Das charakteristische Polynom ist dann aber [mm] (2-\lambda)(1-1.9801\lambda)-1.99^2, [/mm] da scheinst du dich verrechnet zu haben, denn was du raus hast, ist etwas anderes. Versuch da nochmal weiter zu rechnen.

Wenn du den betragsgrößten Eigenwert hast, dann kennst du schon fast die Norm von A. Das gleiche musst du dann nochmal für [mm] A^{-1} [/mm] ausrechnen und schon hast du die Konditionszahl.

Ich hoffe, ich konnte dir helfen!

Bezug
                
Bezug
Kondition einer Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:26 Sa 24.05.2008
Autor: lani

stimmt ...mein fehler war beim charakteristischen polynom...habe nun weiter gerechnet und komme auf die kondition 3,98 was mir doch etwas seltsam erscheint..:(

aber vielen dank für die antwort

Bezug
                        
Bezug
Kondition einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 25.05.2008
Autor: Vreni

Hallo lani,

ich bekomme auch etwas anderes raus, kannst du mal deine Zwischenschritte posten, dann können wir den Fehler suchen?

Gruß,
Vreni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]