matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikKondition der Multiplikation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Kondition der Multiplikation
Kondition der Multiplikation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kondition der Multiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Di 26.02.2008
Autor: subclasser

Hallo zusammen!

In einer der ersten Numerikvorlesungen lernt man ja immer, dass die Multiplikation im Gegensatz zur Addition gut konditioniert ist. Das wollte ich mir jetzt einmal herleiten und bin dabei auf einige Schwierigkeiten gestoßen. Es gilt ja für die relative Kondition $K(x) = [mm] \sup_{\delta x \in B} \frac{\Vert \delta y \Vert / \Vert y \Vert}{\Vert \delta x \Vert / \Vert x \Vert}$ [/mm] mit einer Nullumgebung $B$ und geeigneten Normen.

Ich gehe jetzt davon aus, dass es eine diffbare Funktion $f: [mm] \IR \to \IR$ [/mm] gibt, die das Problem löst. Dann gilt für kleine [mm] $\delta [/mm] x$ (was wir sinnvollerweise für [mm] $\delta [/mm] x [mm] \in [/mm] B$ annehmen können) ja näherungsweise
$$K(x) = [mm] \sup_{\delta x \in B} \left| \frac{(f(x + \delta x) - f(x)) * x}{f(x) * \delta x} \right| [/mm] = [mm] \sup_{\delta x \in B} \left| \frac{f'(x)*\delta x * x}{f(x) * \delta x} \right| [/mm] = [mm] \left| \frac{f'(x)}{f(x)}*x \right|$$ [/mm]
Also für festes $y [mm] \in \IR$ [/mm] erhalten wir mit $f(x) = x [mm] \cdot [/mm] y$ und $f'(x) = y \ \ K(x) = 1$. Also ist das Problem wie erwartet bzw. erhofft gut konditioniert.

Betrachtet man nun eine diffbare Funktion $f: [mm] \IR^n \to \IR$ [/mm] und verwendet eine induzierte Matrixnorm gilt
$$K(x) = [mm] \sup_{\delta x \in B} \frac{\Vert \delta y \Vert / \Vert y \Vert}{\Vert \delta x \Vert / \Vert x \Vert} [/mm] = [mm] \sup_{\delta x \in B} \frac{\Vert f'(x) * \delta x \Vert / \Vert f(x) \Vert}{\Vert \delta x \Vert / \Vert x \Vert}= \frac{\Vert f'(x) \Vert * \Vert x \Vert}{\Vert f(x) \Vert}$$ [/mm]
Betrachten wir nun wieder die Multiplikation $f(x,y) = x [mm] \cdot [/mm] y$ mit $f'(x,y) = (y, x)$ und verwenden wir die euklidische Norm, so folgt $K(x) = [mm] \frac{x^2 + y^2}{|xy|}$. [/mm] Dies ist aber für $x = 1$ und $y = 0.0001$ z.B. sehr schlecht konditioniert!

Wo steckt der Denkfehler?

Gruß,

Stephan

        
Bezug
Kondition der Multiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 03.03.2008
Autor: MatthiasKr

Hi,
> Hallo zusammen!
>  
> In einer der ersten Numerikvorlesungen lernt man ja immer,
> dass die Multiplikation im Gegensatz zur Addition gut
> konditioniert ist. Das wollte ich mir jetzt einmal
> herleiten und bin dabei auf einige Schwierigkeiten
> gestoßen. Es gilt ja für die relative Kondition [mm]K(x) = \sup_{\delta x \in B} \frac{\Vert \delta y \Vert / \Vert y \Vert}{\Vert \delta x \Vert / \Vert x \Vert}[/mm]
> mit einer Nullumgebung [mm]B[/mm] und geeigneten Normen.
>  
> Ich gehe jetzt davon aus, dass es eine diffbare Funktion [mm]f: \IR \to \IR[/mm]
> gibt, die das Problem löst. Dann gilt für kleine [mm]\delta x[/mm]
> (was wir sinnvollerweise für [mm]\delta x \in B[/mm] annehmen
> können) ja näherungsweise
>  [mm]K(x) = \sup_{\delta x \in B} \left| \frac{(f(x + \delta x) - f(x)) * x}{f(x) * \delta x} \right| = \sup_{\delta x \in B} \left| \frac{f'(x)*\delta x * x}{f(x) * \delta x} \right| = \left| \frac{f'(x)}{f(x)}*x \right|[/mm]
>  
> Also für festes [mm]y \in \IR[/mm] erhalten wir mit [mm]f(x) = x \cdot y[/mm]
> und [mm]f'(x) = y \ \ K(x) = 1[/mm]. Also ist das Problem wie
> erwartet bzw. erhofft gut konditioniert.
>  
> Betrachtet man nun eine diffbare Funktion [mm]f: \IR^n \to \IR[/mm]
> und verwendet eine induzierte Matrixnorm gilt
>  [mm]K(x) = \sup_{\delta x \in B} \frac{\Vert \delta y \Vert / \Vert y \Vert}{\Vert \delta x \Vert / \Vert x \Vert} = \sup_{\delta x \in B} \frac{\Vert f'(x) * \delta x \Vert / \Vert f(x) \Vert}{\Vert \delta x \Vert / \Vert x \Vert}= \frac{\Vert f'(x) \Vert * \Vert x \Vert}{\Vert f(x) \Vert}[/mm]
>  
> Betrachten wir nun wieder die Multiplikation [mm]f(x,y) = x \cdot y[/mm]
> mit [mm]f'(x,y) = (y, x)[/mm] und verwenden wir die euklidische
> Norm, so folgt [mm]K(x) = \frac{x^2 + y^2}{|xy|}[/mm]. Dies ist aber
> für [mm]x = 1[/mm] und [mm]y = 0.0001[/mm] z.B. sehr schlecht konditioniert!
>  

was meinst du hier mit multiplikation? die normale multipl. von zwei reellen zahlen $f(x,y)=xy$? in diesem fall ist der zaehler gegeben durch [mm] $|(y,x)\cdot [/mm] (x,y)|=2|xy|$, so dass du die kondition 2 erhaeltst. (so ist es jedenfalls bei Wiki zu lesen)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]