matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKompositionsreihe,Diedergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Kompositionsreihe,Diedergruppe
Kompositionsreihe,Diedergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompositionsreihe,Diedergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Fr 23.10.2015
Autor: sissile

Aufgabe
Finden Sie eine Kompositionsreihe für die Diedergruppe [mm] D_n [/mm] (mit n ≥ 3)

Hallo,
[mm] D_n [/mm] := [mm] <\alpha, \beta> [/mm] mit [mm] \alpha=(12...n), \beta= \pmat {1&2&3&..&n-1&n\\1&n&n-1&..&3&2} [/mm]
Es gibt eine Kompositionsreihe da [mm] |D_n|=2n [/mm] endlich ist.
[mm] D_n \rhd [/mm] < [mm] \alpha> [/mm] da [mm] [D_n: <\alpha>]=2 [/mm]
[mm] <\alpha> \cong \mathbb{Z}_n [/mm] = [mm] \mathbb{Z}/ [/mm] n [mm] \mathbb{Z} [/mm]
n hat Primfaktorzerlegung [mm] n=p_1*..*p_m [/mm]
[mm] \mathbb{Z}_n [/mm] = [mm] \mathbb{Z}/n\mathbb{Z}\rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\} [/mm] ist eine Kompositionsreihe. (Das habe ich schon nachgerechnet)


Ich brauche da aber nun zwischen den Termen [mm] <\alpha> [/mm] und [mm] Z_n [/mm] eine Isomorphie. Deshalb bin ich verunsicher wie ich das anschreibe.
[mm] D_n \rhd <\alpha> \rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\} [/mm]
wäre doch falsch, da dass ja keine Untergruppen von [mm] D_n [/mm] sind, sondern nur isomorph zu Untergruppen von [mm] D_n [/mm] sind.Und ich weiß ja gar nicht ob [mm] D_n [/mm] überhaupt Untergruppen von den ganzen Ordnungen hat. Ich bin da gerade verunsichert.

LG,
sissi

        
Bezug
Kompositionsreihe,Diedergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Fr 23.10.2015
Autor: UniversellesObjekt


> Finden Sie eine Kompositionsreihe für die Diedergruppe [mm]D_n[/mm]
> (mit n ≥ 3)
>  Hallo,
>  [mm]D_n[/mm] := [mm]<\alpha, \beta>[/mm] mit [mm]\alpha=(12...n), \beta= \pmat {1&2&3&..&n-1&n\\1&n&n-1&..&3&2}[/mm]
>  
> Es gibt eine Kompositionsreihe da [mm]|D_n|=2n[/mm] endlich ist.
>  [mm]D_n \rhd[/mm] < [mm]\alpha>[/mm] da [mm][D_n: <\alpha>]=2[/mm]
>  [mm]<\alpha> \cong \mathbb{Z}_n[/mm]
> = [mm]\mathbb{Z}/[/mm] n [mm]\mathbb{Z}[/mm]
>  n hat Primfaktorzerlegung [mm]n=p_1*..*p_m[/mm]
>  [mm]\mathbb{Z}_n[/mm] = [mm]\mathbb{Z}/n\mathbb{Z}\rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\}[/mm]
> ist eine Kompositionsreihe. (Das habe ich schon
> nachgerechnet)
>  
>
> Ich brauche da aber nun zwischen den Termen [mm]<\alpha>[/mm] und
> [mm]Z_n[/mm] eine Isomorphie. Deshalb bin ich verunsicher wie ich
> das anschreibe.
>  [mm]D_n \rhd <\alpha> \rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\}[/mm]
>  
> wäre doch falsch, da dass ja keine Untergruppen von [mm]D_n[/mm]
> sind, sondern nur isomorph zu Untergruppen von [mm]D_n[/mm] sind.Und
> ich weiß ja gar nicht ob [mm]D_n[/mm] überhaupt Untergruppen von
> den ganzen Ordnungen hat. Ich bin da gerade verunsichert.
>  
> LG,
>  sissi

Ich bin mir nicht sicher, ob ich verstehe, wo dein Problem ist. Wenn du eine zyklische Gruppe [mm] $\langle\alpha\rangle$ [/mm] der Ordnung $n$ hast, und $p$ ein Primfaktor von $n$ ist, dann ist [mm] $\langle\alpha^p\rangle$ [/mm] eine Untergruppe und der Quotient ist einfach (zyklisch von primer Ordnung). Ist es das, was du möchtest? Wenn $q$ der nächste Primfaktor ist, betrachte [mm] $\langle\alpha^{pq}\rangle\trianglelefteq\langle\alpha^p\rangle$ [/mm] und so fort.

Übrigens ist [mm] $D_n=\IZ/n\rtimes \IZ/2$, [/mm] wobei [mm] $\IZ/2$ [/mm] durch Invertierung wirkt. Das kann man sich schön geometrisch klarmachen.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Kompositionsreihe,Diedergruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Fr 23.10.2015
Autor: sissile

Ja du hast meine Frage richtig verstanden und so konnte ich mein Problem lösen! Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]