matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenKomposition von Relationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Relationen" - Komposition von Relationen
Komposition von Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition von Relationen: Ist das symmetrisch?
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 17.04.2012
Autor: msg08

Aufgabe
Seien X eine Menge und R1, R2 ⊆ X × X zwei Relationen. Dann ist das Relationenprodukt
definiert durch

R1 ◦ R2 = {(x, y) | ∃z ∈ X.xR1z ∧ zR2y}

Sind R1 und R2 symmetrisch, zeigen Sie, dass dann auch R1 o R2 symmetrisch ist.

Sei (x,y) [mm] \in [/mm] R1 o R2

=> Es existiert z [mm] \in [/mm] X mit xR1z und zR2y

wegen der Symmetrie von R1 und R2 folgt

=> zR1x und yR2z

wegen der Kommutativität von und

=> yR2z und zR1x

Definition von R1 o R2 bzw. eben R2 o R1

=> (y,x) [mm] \in [/mm] R2 o R1

rauskommen sollte doch aber sowas hier (y,x) [mm] \in [/mm] R1 o R2 oder?

        
Bezug
Komposition von Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Di 17.04.2012
Autor: tobit09

Hallo msg08,


die Aussage aus der Aufgabenstellung ist in der Tat falsch, wie folgendes Gegenbeispiel zeigt:

[mm] $X=\{1,2\}$ [/mm]
[mm] $R_1=\{(1,2),(2,1)\}$ [/mm]
[mm] $R_2=\{(2,2)\}$ [/mm]

(Es gilt [mm] $R_1\circ R_2=\{(1,2)\}$.) [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]