matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomposition eine Abbildung!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Komposition eine Abbildung!
Komposition eine Abbildung! < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition eine Abbildung!: Frage
Status: (Frage) beantwortet Status 
Datum: 15:22 Di 06.09.2005
Autor: info-tronic

Hallo Matheraum, ich habe mal eine Frage bezüglich einer Aufgabe, in der es um die Komposition einer Abbildung geht:

Sei f eine Abbildung einer Menge X in sich. Zeigen Sie: Wenn [mm] f\circ{f} [/mm] = id gilt, so ist f bijektiv.


Ich habe gedacht, da [mm] f\circ{f} [/mm] eine identische Abbildung sein muss, müsste das "linke" f ja eigentlich eine inverse Abbildung von f sein, und die einzigste Abbildung die ich mir gedacht habe, wäre f(x)=x.
Ich bin mir sicher, dass das so nicht stimmen kann, aber ich weiss auch nicht wie es sonst gemeint sein kann.

Vielen Dank für Antworten.

        
Bezug
Komposition eine Abbildung!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 06.09.2005
Autor: mathedman


> Sei f eine Abbildung einer Menge X in sich. Zeigen Sie:
> Wenn [mm]f\circ{f}[/mm] = id gilt, so ist f bijektiv.
>  
>
> Ich habe gedacht, da [mm]f\circ{f}[/mm] eine identische Abbildung
> sein muss, müsste das "linke" f ja eigentlich eine inverse
> Abbildung von f sein, und die einzigste Abbildung die ich
> mir gedacht habe, wäre f(x)=x.

Ein anderes Beispiel ist [mm]f\colon \IC \to \IC[/mm], [mm]f(z) = \overline{z}[/mm].

Zum Beweis: Sei also [mm]f\colon X \to X[/mm] mit [mm]f \circ f = id[/mm].
Jetzt musst du zeigen, dass [mm]f[/mm] injektiv und surjektiv ist.
Zur Injektivität:
Seien [mm]x,y \in X[/mm] mit [mm]f(x) = f(y)[/mm]. Dann folgt [mm]f(f(x)) = f(f(y))[/mm] und somit ...

Zur Surjektivität:
Sei [mm]y \in X[/mm]. Wir müssen ein [mm]x \in X[/mm] finden mit [mm]f(x) = y[/mm]. Es gilt aber [mm]f(f(y)) = y[/mm], ...


Bezug
                
Bezug
Komposition eine Abbildung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Di 06.09.2005
Autor: info-tronic

Erstmal Danke für die schnelle Antwort.

Die Injektivität ist klar, es kann keine x,y aus X geben, für die gilt f(x)=f(y), da es sonst keine identische Abbildung mehr wäre, daraus folgt x=y.

Zur Surjektivität hab ich noch eine Frage, es muss doch gezeigt werden, dass es für jedes y aus X ein x aus X gibt, sodass gilt f(f(y))=y.
Ist es denn damit schon gezeigt, denn fof=id ist ja Voraussetzung gewesen, oder was sollte man hier noch zeigen?

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]