matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitKomplexität bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Komplexität & Berechenbarkeit" - Komplexität bestimmen
Komplexität bestimmen < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexität bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Mo 08.09.2008
Autor: uecki

Aufgabe
a und b seinen n-dimensionale Vektoren, A eine reelle n x n Matrix. Bestimmen Sie die Komplexität der Berechnung der reellen Zahl r = [mm] a^T [/mm] * A * b.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

Hallo,

ich habe hier eine Lösung zu und zwar: [mm] n^2 [/mm] + n = [mm] O(n^2). [/mm] Aber warum ist das [mm] n^2 [/mm] +n ?
Ich dachte, da es drei Variablen sind die miteinander multipliziert werden, würde die Komplexität [mm] O(n^3) [/mm] sein...???

Danke schon mal ;-)


        
Bezug
Komplexität bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Mo 08.09.2008
Autor: Arralune

Wenn du über die Matrizen und Vektoren nichts weiteres weißt musst du die Formeln, die du aus der linearen Algebra kennst verwenden:
[mm]a^T * A * b = a^T * (A * b) = a^T * t[/mm]
wobei [mm]t[/mm] ein n-dimensionaler Vektor ist, der definiert wird als [mm]t_i = \sum_{j=1}^n A_{ij} * b_j[/mm]. Also musst du für diesen Teil der Rechnung n mal (alle [mm]t_i[/mm]) n Rechenoperationen (jeweils eine Addition und eine Multiplikation) ausführen, kommst also auf [mm]n^2[/mm]. Übrig bleibt noch die Berechnung von [mm]a^T*t[/mm] was zur Berechnung von [mm]\sum_{i=1}^n a_i * t_i[/mm] führt. Also n Operationen. Insgesamt also [mm]n^2 + n = O(n^2)[/mm] Operationen.
Als Pseudocode:

double[] t = new double[n]
for (int j = 0; j < n; j++) {
  double sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i][j] * b[j];
  }
  t[i] = sum;
}
result = 0;
for (int i = 0; i < n; i++)
  result += a[i] * t[i];

Die tiefste Verschachtelung sind die oberen zwei For-Schleifen, also ist die Komplexität [mm]O(n^2)[/mm]. Wenn man die temporäre Variable weglässt und das Ergebnis direkt als [mm]\sum_{i=1}^n\sum_{j=1}^n a_i * A_{ij} * b_j[/mm] berechnet wird die quadratische Abhängigkeit noch deutlicher. Als Pseudocode wäre das dann:

result = 0;
for (int j = 0; j < n; j++) {
  double sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i][j] * b[j];
  }
  result += a[i] * sum;
}

Die Anzahl der multiplizierten Variablen hat mit der Komplexität nichts zu tun, wir nehmen ja an, dass Zahlen in konstanter Zeit multipliziert werden können, a * b * c mit a, b, c Skalar hätte also die Komplexität [mm]O(1)[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]