matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKomplexifizierung- Norm finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Komplexifizierung- Norm finden
Komplexifizierung- Norm finden < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexifizierung- Norm finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 29.08.2011
Autor: marc1601

[mm] \textbf{Definition:} [/mm] Sei $E$ ein reeller Banachraum und [mm] $E_c [/mm] := E + iE$. Dann heißt [mm] $(E_c, \parallel\cdot \parallel)$ [/mm] eine [mm] \textit{Komplexifizierung} [/mm] von $E$, falls

1. [mm] $(E_c, \parallel\cdot \parallel)$ [/mm] ist ein komplexer Banachraum.

2. Es gilt [mm] $\parallel\xi [/mm] + i 0 [mm] \parallel= \parallel\xi \parallel$ [/mm] für alle [mm] $\xi \in [/mm] E$, d.h. die Einschränkung von [mm] $\parallel\cdot \parallel$ [/mm] auf $E$ stimmt mit der ursprünglichen Norm von $E$ überein.

3. Für alle [mm] $\xi, \eta \in [/mm] E$ gilt [mm] $\parallel\xi [/mm] + i [mm] \eta \parallel= \parallel\xi [/mm] - i [mm] \eta \parallel$. [/mm]

Hallo zusammen, ich möchte zeigen, dass es für jeden reellen Banachraum eine solche Komplexifizierung gibt. Eine - wie ich dachte - wunderbare Idee ist es dazu  [mm] $\parallel\xi [/mm] + [mm] i\eta \parallel:= \sup\{ \sqrt{f(\xi)^2 + f(\eta)^2} \ : \ f \in E', \ \parallel f \parallel_{op} \leq 1 \}$ [/mm]  zu definieren. Dabei bezeichnet $E'$ den topologischen Dualraum von $E$ und [mm] $\parallel \cdot \parallel_{op}$ [/mm] die Operatornorm. Bis auf die Dreiecksungleichung kann ich auch alle Normeigenschaften zeigen, aber immer wenn ich mich daran versuche, stoße ich auf Granit. Wenn ich [mm] $\parallel (\xi [/mm] + [mm] \alpha) [/mm] + [mm] i(\eta [/mm] + [mm] \beta) \parallel$ [/mm] umschreiben will (und den sup-Ausdruck erstmal weglasse), bekomme ich wegen der Quadrate immer einen Ausdruck der Form [mm] $f(\xi)^2 [/mm] + [mm] 2f(\xi)f(\alpha) [/mm] + [mm] f(\alpha)^2$. [/mm] Kann ich den nicht-quadratischen Term irgendwie wegbekommen? Mir fällt dazu leider keine Lösung ein, oder sollte ich einen ganz anderen Ansatz wählen? Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem anderen Forum und auf keiner anderen Internetseite gestellt.

        
Bezug
Komplexifizierung- Norm finden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 29.08.2011
Autor: felixf

Moin!

> [mm]\textbf{Definition:}[/mm] Sei [mm]E[/mm] ein reeller Banachraum und [mm]E_c := E + iE[/mm].
> Dann heißt [mm](E_c, \parallel\cdot \parallel)[/mm] eine
> [mm]\textit{Komplexifizierung}[/mm] von [mm]E[/mm], falls
>  
> 1. [mm](E_c, \parallel\cdot \parallel)[/mm] ist ein komplexer
> Banachraum.
>  
> 2. Es gilt [mm]\parallel\xi + i 0 \parallel= \parallel\xi \parallel[/mm]
> für alle [mm]\xi \in E[/mm], d.h. die Einschränkung von
> [mm]\parallel\cdot \parallel[/mm] auf [mm]E[/mm] stimmt mit der
> ursprünglichen Norm von [mm]E[/mm] überein.
>  
> 3. Für alle [mm]\xi, \eta \in E[/mm] gilt [mm]\parallel\xi + i \eta \parallel= \parallel\xi - i \eta \parallel[/mm].
>  
> Hallo zusammen, ich möchte zeigen, dass es für jeden
> reellen Banachraum eine solche Komplexifizierung gibt. Eine
> - wie ich dachte - wunderbare Idee ist es dazu  
> [mm]\parallel\xi + i\eta \parallel:= \sup\{ \sqrt{f(\xi)^2 + f(\eta)^2} \ : \ f \in E', \ \parallel f \parallel_{op} \leq 1 \}[/mm]
>  zu definieren. Dabei bezeichnet [mm]E'[/mm] den topologischen
> Dualraum von [mm]E[/mm] und [mm]\parallel \cdot \parallel_{op}[/mm] die
> Operatornorm. Bis auf die Dreiecksungleichung kann ich auch
> alle Normeigenschaften zeigen, aber immer wenn ich mich
> daran versuche, stoße ich auf Granit. Wenn ich [mm]\parallel (\xi + \alpha) + i(\eta + \beta) \parallel[/mm]
> umschreiben will (und den sup-Ausdruck erstmal weglasse),
> bekomme ich wegen der Quadrate immer einen Ausdruck der
> Form [mm]f(\xi)^2 + 2f(\xi)f(\alpha) + f(\alpha)^2[/mm]. Kann ich
> den nicht-quadratischen Term irgendwie wegbekommen? Mir
> fällt dazu leider keine Lösung ein, oder sollte ich einen
> ganz anderen Ansatz wählen? Vielen Dank für eure Hilfe!

Der Ansatz ist schon gut. Versuch es nur etwas weniger technisch zu machen ;-)

Ist $f [mm] \in [/mm] E'$, so ist $h(x + i y) := f(x) + i f(y)$ in [mm] $E_c'$. [/mm] Weiterhin ist [mm] $\sqrt{f(\xi)^2 + f(\eta)^2} [/mm] = [mm] |h(\xi [/mm] + i [mm] \eta)|$, [/mm] wobei [mm] $|\bullet|$ [/mm] der normale Betrag auf [mm] $\IC$ [/mm] ist.

Jetzt ist $h$ linear und fuer [mm] $|\bullet|$ [/mm] gilt die Dreiecksungleichung - das liefert dir sofort die Dreiecksungleichung ohne das Supremum.

Und mit Supremum ist es auch nicht viel schwerer....

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]