matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexes Kurvenintegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Komplexes Kurvenintegral
Komplexes Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Kurvenintegral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:11 So 18.11.2007
Autor: Mr.Teutone

Aufgabe
Berechnen Sie folgende Integrale:
a) [mm] \integral_{C}^{}{\bruch{dz}{z^2-4}} [/mm] , wobei C der mathematisch positiv orientierte Kreis |z-2|=2 sei.

Tach Leute

Ich hab für obige Aufgabe zwei verschiedene Ansätze, von denen mindestens einer nicht stimmen kann...

Zunächst will ich folgende Parametrisierung der Kurve C benutzen: [mm] z(t)=2e^{it}+2 [/mm] mit [mm] t\in [0,2\pi]. [/mm]

1. Ansatz:

[mm] \integral_{C}^{}{\bruch{dz}{z^2-4}}=\integral_{C}^{}{\bruch{dz}{(z+2)(z-2)}}=\integral_{0}^{2\pi}{\bruch{2ie^{it}}{(2e^{it}+4)2e^{it}}dt}=\integral_{0}^{2\pi}{\bruch{i}{(2e^{it}+4)}dt}=\ldots [/mm]

2. Ansatz:

[mm] \integral_{C}^{}{\bruch{dz}{z^2-4}}=\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}-\bruch{1}{z+2}dz}=\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}dz}-\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z+2}dz}= [/mm]
nach Integralsatz von Cauchy:
[mm] =\bruch{1}{4}\integral_{C}^{}{\bruch{1}{z-2}dz}=\bruch{1}{4}\integral_{0}^{2\pi}{\bruch{2ie^{it}}{2e^{it}}dt}=\bruch{1}{4}\integral_{0}^{2\pi}{i dt}=\ldots [/mm]

Irgendwie stimmt das alles nicht so wirklich, hab ich das Gefühl. Ich wäre dankbar, wenn mir einer nen Tipp geben kann.

        
Bezug
Komplexes Kurvenintegral: Tipp
Status: (Antwort) fertig Status 
Datum: 01:18 So 18.11.2007
Autor: generation...x

Da die zu integrierende Funktion im Inneren des Kreises (Skizze?) eine Polstelle hat, lautet der Tipp: []Residuensatz.

Bezug
                
Bezug
Komplexes Kurvenintegral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:47 So 18.11.2007
Autor: Mr.Teutone

Also dass die Funktion im Inneren der Kreisscheibe eine Polstelle hat, ist mir klar. Mit dem Residuensatz kann ich jetzt wenig anfangen. Ich bin der Meinung, das Kurvenintegral muss sich auch ohne Kenntnis von diesem berechnen lassen. Wie schauts mit meinen beiden Ansätzen aus? Komm ich da weiter oder wieso sind sie falsch?

Vielen Dank für weitere Antworten.

Bezug
                        
Bezug
Komplexes Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 So 18.11.2007
Autor: generation...x

Also, wenn ich das im Kopf richtig überschlagen habe, dann kommst du mit dem Residuensatz auf das gleiche Ergebnis wie in deinem 2ten Ansatz...

Bezug
                        
Bezug
Komplexes Kurvenintegral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Di 20.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Komplexes Kurvenintegral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:06 Di 20.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]