matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKomplexere Extremwertprobleme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Komplexere Extremwertprobleme
Komplexere Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexere Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Do 07.09.2006
Autor: Stefan-auchLotti

Aufgabe
Welches rechtwinklige Dreieck mit der Hypotenuse 6 cm erzeugt bei Rotation um eine Kathete (um die Hypothenuse) den Rotationskörper größten Volumens?

Hallo,

Mein Ansatz ist:

[mm] V_{Kreiskegel}=\bruch{\pi*r^2h}{3} [/mm]


Das war's auch schon!

Danke für schnelle Hilfe!

Gruß,

Stefan.

        
Bezug
Komplexere Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Do 07.09.2006
Autor: Manu_Chemnitz

Hallo Stefan,

Hier zunächst die Lösung für die Rotation um die Kathete(n):

Also nach dem Satz des Pythagoras lauten die beiden Katheten

[mm] a = \wurzel{36-b^2}, b = \wurzel{36-a^2} [/mm]

Eine davon dient als Höhe und die andere als Radius des Kreiskegels (welche man als was einsetzt, ist egal) und das kann man in die Volumenformel einsetzen:

[mm] V = \bruch{\pi * (\wurzel{36-h^2})^2 * \wurzel{36-r^2}}{3} = \bruch{\pi * (36-h^2)*h}{3} = 12\pi h - \bruch{\pi}{3} h^3 [/mm]

Dies ist jetzt die Größe, die maximiert werden muss, also bilden wir die erste Ableitung:

[mm] V' = 12 \pi - \pi h^2 [/mm]

Setzt man diese Null, erhält man als Lösung

[mm] h = 2 \wurzel{3} [/mm]

Und wiederum nach dem Satz des Pythagoras muss dann die Kathete, für den Radius [mm] 2 \wurzel{6} [/mm] sein.

Nun zu der Aufgabe, dass das Dreieck um die Hypothenuse rotieren soll: Dabei entstehen dann zwei Kreiskegel, sodass wir die Höhe über der Hypothenuse h und die Hypothenusenabschnitte p ("unter" a) und q ("unter" b) benötigen. Nach dem Kathetensatz gilt

[mm] a^2 = cp, b^2 = cq [/mm], also in unserem Fall

[mm] 36 - b^2 = 6p, 36 - a^2 = 6q [/mm].

Formt man dies um, erhält man

[mm] p = \bruch{1}{6} a^2, q = 6 - \bruch{1}{6} a^2 [/mm].

Und h kann man über den Höhensatz [mm] h^2 = pq [/mm] so berechnen:

[mm] h = \wurzel{pq} = \wurzel{a^2- \bruch{1}{36} a^4 [/mm]

Die Volumenformel des Rotationskörpers setzt sich nun aus den 2 Kegeln zusammen. Beide haben den Radius h und als Höhe p bzw. q. Also lautet die Volumenformel

[mm] V = \bruch{\pi}{3} (a^2-\bruch{1}{36}a^4)(6-\bruch{1}{6}a^2+\bruch{1}{6} a^2) = \bruch{\pi}{2} (a^2-\bruch{1}{36} a^4) [/mm]

Die erste Ableitung davon lautet

[mm] V' = \bruch{\pi}{2}(2a-\bruch{1}{9}a^3) [/mm]

und bei Nullsetzen erhält man

[mm] a = 3 \wurzel{2} [/mm].

Nach dem Satz des Pythagoras muss dann auch die zweite Kathete, b, gleich [mm] 3 \wurzel{2} [/mm] sein.

Mit freundlichen Grüßen

Manuela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]