Komplexer Logarithmus Zweige < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:48 Mi 13.09.2017 | Autor: | Paivren |
Guten Tag,
ich habe eine Verständnisschwierigkeit zum komplexen Logarithmus.
Aufgabe: Sei [mm] w=\bruch{1}{\wurzel{2}}(1+i), G:=\IC [/mm] \ [mm] \{wx|-\infty
Laut eines Satzes aus der Vorlesung existiert auf dieser Menge ein Zweig des Logarithmus. Der ist zu bestimmen.
So, bisher sind wir bei der Log-Definition immer von der komplexen Ebene ausgegangen, bei der die negative reelle Achse fehlt (und 0), und z geschrieben wird als [mm] z=|z|e^{i\phi} [/mm] mit [mm] \phi\in ]-\pi,\pi[.
[/mm]
Dann kann man den "Hauptzweig" des Logarithmus setzen zu [mm] log(z)=log(|z|)+i\phi
[/mm]
Die Nebenzweige auf dieser Menge sind dann [mm] f_{n}(z)=log(|z|)+i\phi+i2\pi*n [/mm] mit n aus [mm] \IZ [/mm] \ [mm] \{0\}.
[/mm]
Soweit richtig?
Die Menge G beinhaltet nun aber die negativen reellen Zahlen, dafür wird die Achse nach 'unten links' weggenommen.
Dann dachte ich mir, ich gehe hin und definiere mir einen 'neuen' Hauptzweig auf G, indem ich sage, dass [mm] z=|z|e^{i\phi} [/mm] mit [mm] \phi\in ]-\bruch{3}{4}\pi,\bruch{5}{4}\pi[.
[/mm]
Dann gilt wieder: [mm] log(z)=log(|z|)+i\phi
[/mm]
Und für die Nebenzweige [mm] f_{n}(z)=log(|z|)+i\phi+2i\pi*n [/mm] mit n aus [mm] \IZ [/mm] \ [mm] \{0\}
[/mm]
Ist das soweit richtig?
Gruß
Paivren
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:12 Mi 13.09.2017 | Autor: | fred97 |
> Guten Tag,
>
> ich habe eine Verständnisschwierigkeit zum komplexen
> Logarithmus.
>
> Aufgabe: Sei [mm]w=\bruch{1}{\wurzel{2}}(1+i), G:=\IC[/mm] \
> [mm]\{wx|-\infty
> Laut eines Satzes aus der Vorlesung
> existiert auf dieser Menge ein Zweig des Logarithmus. Der
> ist zu bestimmen.
>
> So, bisher sind wir bei der Log-Definition immer von der
> komplexen Ebene ausgegangen, bei der die negative reelle
> Achse fehlt (und 0), und z geschrieben wird als
> [mm]z=|z|e^{i\phi}[/mm] mit [mm]\phi\in ]-\pi,\pi[.[/mm]
> Dann kann man den
> "Hauptzweig" des Logarithmus setzen zu
> [mm]log(z)=log(|z|)+i\phi[/mm]
>
> Die Nebenzweige auf dieser Menge sind dann
> [mm]f_{n}(z)=log(|z|)+i\phi+i2\pi*n[/mm] mit n aus [mm]\IZ[/mm] \ [mm]\{0\}.[/mm]
>
> Soweit richtig?
>
> Die Menge G beinhaltet nun aber die negativen reellen
> Zahlen, dafür wird die Achse nach 'unten links'
> weggenommen.
>
> Dann dachte ich mir, ich gehe hin und definiere mir einen
> 'neuen' Hauptzweig auf G, indem ich sage, dass
> [mm]z=|z|e^{i\phi}[/mm] mit [mm]\phi\in ]-\bruch{3}{4}\pi,\bruch{5}{4}\pi[.[/mm]
>
> Dann gilt wieder: [mm]log(z)=log(|z|)+i\phi[/mm]
> Und für die Nebenzweige [mm]f_{n}(z)=log(|z|)+i\phi+2i\pi*n[/mm]
> mit n aus [mm]\IZ[/mm] \ [mm]\{0\}[/mm]
>
> Ist das soweit richtig?
Ja,passt alles
>
> Gruß
> Paivren
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:49 Mi 13.09.2017 | Autor: | Paivren |
Hallo Fred,
danke für die Bestätigung.
Das heißt also, auf unterschiedlichen Mengen kann ich einen unterschiedlichen Hauptzweig definieren.
Nun fordert man (zumindest bei uns im Skript), dass die Hauptzweigfunktion von 1 gleich 0 ist, also log(1)=0.
Das ist dann äquivalent dazu, dass ich das [mm] \phi-Intervall [/mm] auch genau so wähle, wie ich es gewählt habe, und nicht etwa [mm] \phi \in ]\bruch{5}{4}\pi, \bruch{13}{4}\pi[ [/mm] (auf beide Grenzen [mm] 2\pi [/mm] addiert).
Und immer dann, wenn ich einen Zweig des Logarithmus auf einer Menge habe, weiß ich, dass es unendlich viele Zweige des Logarithmus auf der Menge gibt, nicht wahr?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:21 Do 14.09.2017 | Autor: | Paivren |
*pushpush*
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 19:09 Sa 16.09.2017 | Autor: | Paivren |
Vielen Dank :)
Dann habe ich es richtig verstanden.
Dann eine Frage zur Definition,
ich glaube, mit dem Wort "Hauptzweig" bezieht man sich allerdings immer auf die komplexe Ebene ohne die negative reelle Achse, es ist also nicht üblich, bei der von mir benutzten Funktion von "Hauptzweig" zu reden, obwohl auch da gilt f(1)=0, oder?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Mo 18.09.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|