matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlenfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Komplexe Zahlenfolge
Komplexe Zahlenfolge < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 28.04.2010
Autor: DasDogma

Aufgabe
Gegeben seien die Zahlenfolgen [mm] \{z_{n} \} [/mm] mit [mm] z_{n}=\bruch{1+i}{n^2} [/mm] und [mm] \{w_{n} \} [/mm] mit [mm] w_{n}=e^{in\bruch{\pi}{4}} [/mm].

Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.

Hallo mit einander,

wir haben jetzt in der Mathe-Vorlesung mit dem Thema Funktionentheorie begonnen. Folgen waren noch nie so mein Ding, deshalb hoffe ich, dass ihr meine Ergebnisse bestätigen oder mir halt helfen könntet, wenn ich falsch liegen sollte.

Die erste Folge habe ich in Real- und Imaginärteil zerlegt und davon den Grenzwert per Limes bestimmt:

[mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm]

Dies gilt ja in beiden Fällen.

Die zweite Folge habe ich zunächst folgendermaßen zerlegt:

[mm] w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm]

Dieser Ausdruck sagt mir dann, dass diese Folge nicht konvergent ist, sondern sich der Wert für [mm] n\to\infty[/mm] immer wieder wiederholen wird, aufgrund der Eigenschaften des Sinus und des Kosinus.

Sind meine Überlegungen richtig?

Es gibt ja auch noch die Herangehensweise mit

[mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]

Mein Problem dabei ist, dass ich nicht ganz verstehe was ich da zu tun hab, weil ich kann ja auch nicht für die erste Folge [mm]n=0[/mm] setzen.

Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon einmal danke im Vorraus.

Beste Grüße
DasDogma

        
Bezug
Komplexe Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 28.04.2010
Autor: schachuzipus

Hallo DasDogma,

> Gegeben seien die Zahlenfolgen [mm]\{z_{n} \}[/mm] mit
> [mm]z_{n}=\bruch{1+i}{n^2}[/mm] und [mm]\{w_{n} \}[/mm] mit
> [mm]w_{n}=e^{in\bruch{\pi}{4}} [/mm].
>  
> Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre
> Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.
>  Hallo mit einander,
>  
> wir haben jetzt in der Mathe-Vorlesung mit dem Thema
> Funktionentheorie begonnen. Folgen waren noch nie so mein
> Ding, deshalb hoffe ich, dass ihr meine Ergebnisse
> bestätigen oder mir halt helfen könntet, wenn ich falsch
> liegen sollte.
>  
> Die erste Folge habe ich in Real- und Imaginärteil zerlegt
> und davon den Grenzwert per Limes bestimmt:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm] [ok]
>  
> Dies gilt ja in beiden Fällen.
>  
> Die zweite Folge habe ich zunächst folgendermaßen
> zerlegt:
>  
> [mm]w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm] [ok]
>  
> Dieser Ausdruck sagt mir dann, dass diese Folge nicht
> konvergent ist, sondern sich der Wert für [mm]n\to\infty[/mm] immer
> wieder wiederholen wird, aufgrund der Eigenschaften des
> Sinus und des Kosinus.

Das stimmt verbal blumig, aber kannst du das etwas "sauberer" begründen?


> Sind meine Überlegungen richtig?
>  
> Es gibt ja auch noch die Herangehensweise mit
>  
> [mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]
>  
> Mein Problem dabei ist, dass ich nicht ganz verstehe was
> ich da zu tun hab, weil ich kann ja auch nicht für die
> erste Folge [mm]n=0[/mm] setzen.

Na, die Vermutung im 1.Fall ist: GW=0

Also [mm] $\left|\frac{1+i}{n^2}-0\right|=\frac{\sqrt{2}}{n^2}$ [/mm]

Und das kriegst du doch beliebig klein ...

>  
> Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon
> einmal danke im Vorraus.

Bitte nur ein "r"

>  
> Beste Grüße
>  DasDogma


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]