matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen, Bestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen, Bestimmung
Komplexe Zahlen, Bestimmung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen, Bestimmung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:11 Di 29.10.2013
Autor: jayw

Aufgabe
Bestimmen Sie für $z = [mm] 1-\wurzel{3}j$ [/mm] die kleinste positive ganze Zahl n, für die der Abstand in der komplexen Zahlenebene zwischen $z' = [mm] z^n$ [/mm] und dem Ursprung größer als 100 ist. Geben Sie $z'$ in Normal- und Polarform an.


Hallo mal wieder!
Ich habe bisher leider nicht wirklich einen Ansatz für die gestellte Aufgabe.
Folgende Überlegung bisher:
- Abstand in der komplexen Zahlenebene: Betrag von z'? Wenn ja, was ist z'?
- Wenn ich z' habe ist Normalform/Polarform denke ich kein Problem mehr.
Mein Hauptproblem ist also: Was ist eigentlich z'? Die erste Ableitung von z?

Danke!

        
Bezug
Komplexe Zahlen, Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Di 29.10.2013
Autor: Leopold_Gast

Bitte korrigiere die Aufgabenstellung. Der Text ist unsinnig. Was soll denn [mm]z_n[/mm] bedeuten? Wozu ist überhaupt [mm]z[/mm] da?

Bezug
        
Bezug
Komplexe Zahlen, Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Di 29.10.2013
Autor: abakus


> Bestimmen Sie für [mm]z = 1-\wurzel{3}j[/mm] die kleinste positive
> ganze Zahl n, für die der Abstand in der komplexen
> Zahlenebene zwischen [mm]z' = z_n[/mm] und dem Ursprung größer als
> 100 ist. Geben Sie [mm]z'[/mm] in Normal- und Polarform an.
> Hallo mal wieder!
> Ich habe bisher leider nicht wirklich einen Ansatz für
> die gestellte Aufgabe.
> Folgende Überlegung bisher:
> - Abstand in der komplexen Zahlenebene: Betrag von z'?
> Wenn ja, was ist z'?
> - Wenn ich z' habe ist Normalform/Polarform denke ich kein
> Problem mehr.
> Mein Hauptproblem ist also: Was ist eigentlich z'? Die
> erste Ableitung von z?

>

> Danke!

Hallo,
soll das statt [mm] $z_n$ [/mm] vielleicht [mm] $z^n$ [/mm] heißen?

Gruß Abakus

Bezug
                
Bezug
Komplexe Zahlen, Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Di 29.10.2013
Autor: Leopold_Gast

Ah so! Ja, das würde Sinn machen.

Bezug
        
Bezug
Komplexe Zahlen, Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Mi 30.10.2013
Autor: jayw

Natürlich soll es [mm] $z^n$ [/mm] heißen. Sorry...

Bezug
        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 30.10.2013
Autor: tobit09

Hallo jayw!


> Bestimmen Sie für [mm]z = 1-\wurzel{3}j[/mm] die kleinste positive
> ganze Zahl n, für die der Abstand in der komplexen
> Zahlenebene zwischen [mm]z' = z^n[/mm] und dem Ursprung größer als
> 100 ist. Geben Sie [mm]z'[/mm] in Normal- und Polarform an.

Was ist [mm]j[/mm]? soll es vielleicht [mm]i[/mm] heißen?


> Folgende Überlegung bisher:
> - Abstand in der komplexen Zahlenebene: Betrag von z'?

Genau. Der Abstand einer komplexem Zahl zum Ursprung in der komplexen Ebene ist einfach der Betrag der Zahl.


> Wenn ja, was ist z'?
> - Wenn ich z' habe ist Normalform/Polarform denke ich kein
> Problem mehr.
> Mein Hauptproblem ist also: Was ist eigentlich z'? Die
> erste Ableitung von z?

Nein, [mm]z[/mm] ist ja gar keine Funktion.
[mm]z'[/mm] ist einfach eine Abkürzung für die gesuchte Zahl [mm]z^n[/mm].


Viele Grüße
Tobias

Bezug
                
Bezug
Komplexe Zahlen, Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Mi 30.10.2013
Autor: jayw


> Hallo jayw!
>  
>
> > Bestimmen Sie für [mm]z = 1-\wurzel{3}j[/mm] die kleinste positive
>  > ganze Zahl n, für die der Abstand in der komplexen

>  > Zahlenebene zwischen [mm]z' = z^n[/mm] und dem Ursprung größer

> als
>  > 100 ist. Geben Sie [mm]z'[/mm] in Normal- und Polarform an.

>  Was ist [mm]j[/mm]? soll es vielleicht [mm]i[/mm] heißen?

Nein, das soll j heißen, wir Elektrotechniker brauchen i für den Strom ;)

>
> > Folgende Überlegung bisher:
>  > - Abstand in der komplexen Zahlenebene: Betrag von z'?

>  Genau. Der Abstand einer komplexem Zahl zum Ursprung in
> der komplexen Ebene ist einfach der Betrag der Zahl.
>  
>
> > Wenn ja, was ist z'?
>  > - Wenn ich z' habe ist Normalform/Polarform denke ich

> kein
>  > Problem mehr.

>  > Mein Hauptproblem ist also: Was ist eigentlich z'? Die

>  > erste Ableitung von z?

>  Nein, [mm]z[/mm] ist ja gar keine Funktion.
>  [mm]z'[/mm] ist einfach eine Abkürzung für die gesuchte Zahl
> [mm]z^n[/mm].

Das heißt ich suche eine komplexe Zahl der Form a+bj für die gilt [mm] $\wurzel {a^2+b^2}>100$ [/mm] ?

>
> Viele Grüße
>  Tobias


Bezug
                        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mi 30.10.2013
Autor: tobit09


> > > Bestimmen Sie für [mm]z = 1-\wurzel{3}j[/mm] die kleinste positive
> > > ganze Zahl n, für die der Abstand in der komplexen
> > > Zahlenebene zwischen [mm]z' = z^n[/mm] und dem Ursprung
> größer
> > als
> > > 100 ist. Geben Sie [mm]z'[/mm] in Normal- und Polarform an.
> > Was ist [mm]j[/mm]? soll es vielleicht [mm]i[/mm] heißen?
> Nein, das soll j heißen, wir Elektrotechniker brauchen i
> für den Strom ;)

Achso, da habe ich etwas dazugelernt!


> > > Wenn ja, was ist z'?
> > > - Wenn ich z' habe ist Normalform/Polarform denke ich
> > kein
> > > Problem mehr.
> > > Mein Hauptproblem ist also: Was ist eigentlich z'?
> Die
> > > erste Ableitung von z?
> > Nein, [mm]z[/mm] ist ja gar keine Funktion.
> > [mm]z'[/mm] ist einfach eine Abkürzung für die gesuchte Zahl
> > [mm]z^n[/mm].
> Das heißt ich suche eine komplexe Zahl der Form a+bj für
> die gilt [mm]\wurzel {a^2+b^2}>100[/mm] ?

Nicht irgendeine solche komplexe Zahl ist gesucht, sondern eine der Form [mm]z^n[/mm], und zwar die mit minimalem [mm]n[/mm].

[mm]z[/mm] ist die Zahl [mm]1-\wurzel3j[/mm].

Gesucht sind die kleinste natürliche Zahl [mm]n[/mm] mit [mm]|(1-\wurzel3j)^n|>100[/mm] und die Zahl [mm](1-\wurzel3j)^n[/mm] für dieses [mm]n[/mm] in Normal- und Polarform.

Bezug
                                
Bezug
Komplexe Zahlen, Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Mi 30.10.2013
Autor: jayw

>[...]
>  > Das heißt ich suche eine komplexe Zahl der Form a+bj

> für
>  > die gilt [mm]\wurzel {a^2+b^2}>100[/mm] ?

>  Nicht irgendeine solche komplexe Zahl ist gesucht, sondern
> eine der Form [mm]z^n[/mm], und zwar die mit minimalem [mm]n[/mm].
>  
> [mm]z[/mm] ist die Zahl [mm]1-\wurzel3j[/mm].
>  
> Gesucht sind die kleinste natürliche Zahl [mm]n[/mm] mit
> [mm]|(1-\wurzel3j)^n|>100[/mm] und die Zahl [mm](1-\wurzel3j)^n[/mm] für
> dieses [mm]n[/mm] in Normal- und Polarform.

Das ist klar. Also müsste folgendes korrekt sein:
der Betrag von z ist 2. Also muss ich die Ungleichung [mm] $2^n [/mm] > 100$ lösen.
Das ergibt 6,64385619. Also ist das gesuchte n=7.
Für Normalform und Polarform:
[mm] $1-\wurzel{3}j=2*cos(\alpha)+sin(\alpha)j$, [/mm] wobei [mm] $\alpha=-arccos\left( \bruch{1}{2} \right)=-\bruch{1}{3}\pi=-60$° [/mm]
[mm] $z=2e^{-\bruch{1}{3}\pi*j}$ [/mm]
[mm] $z^7=128e^{-\bruch{1}{3}\pi*j}=128*cos(-60$°$)+128*sin(-60$°$)j \approx [/mm] 64-110,851j$

Ist das korrekt?

Bezug
                                        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Mi 30.10.2013
Autor: fred97


> >[...]
>  >  > Das heißt ich suche eine komplexe Zahl der Form a+bj

> > für
>  >  > die gilt [mm]\wurzel {a^2+b^2}>100[/mm] ?

>  >  Nicht irgendeine solche komplexe Zahl ist gesucht,
> sondern
> > eine der Form [mm]z^n[/mm], und zwar die mit minimalem [mm]n[/mm].
>  >  
> > [mm]z[/mm] ist die Zahl [mm]1-\wurzel3j[/mm].
>  >  
> > Gesucht sind die kleinste natürliche Zahl [mm]n[/mm] mit
> > [mm]|(1-\wurzel3j)^n|>100[/mm] und die Zahl [mm](1-\wurzel3j)^n[/mm] für
> > dieses [mm]n[/mm] in Normal- und Polarform.
>
> Das ist klar. Also müsste folgendes korrekt sein:
>  der Betrag von z ist 2. Also muss ich die Ungleichung [mm]2^n > 100[/mm]
> lösen.
>  Das ergibt 6,64385619. Also ist das gesuchte n=7.

Ja


>  Für Normalform und Polarform:
>  [mm]1-\wurzel{3}j=2*cos(\alpha)+sin(\alpha)j[/mm], wobei
> [mm]\alpha=-arccos\left( \bruch{1}{2} \right)=-\bruch{1}{3}\pi=-60[/mm]°
>  
> [mm]z=2e^{-\bruch{1}{3}\pi*j}[/mm]
>  
> [mm]z^7=128e^{-\bruch{1}{3}\pi*j}=128*cos(-60[/mm]°[mm])+128*sin(-60[/mm]°[mm])j \approx 64-110,851j[/mm]
>  
> Ist das korrekt?

Ja, aber die Darstellung ....

1. 60° = [mm] \bruch{\pi}{3} [/mm]

2. cos(-x)=cos(x), sin(-x)=-sin(x)

3. 110,851  muss doch nicht sein !! Es ist [mm] z^7=64z=64(1-\wurzel{3}*j) [/mm]

FRED


Bezug
                                                
Bezug
Komplexe Zahlen, Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Mi 30.10.2013
Autor: jayw

[...]
> >  Für Normalform und Polarform:

>  >  [mm]1-\wurzel{3}j=2*cos(\alpha)+sin(\alpha)j[/mm], wobei
> > [mm]\alpha=-arccos\left( \bruch{1}{2} \right)=-\bruch{1}{3}\pi=-60[/mm]°
>  
> >  

> > [mm]z=2e^{-\bruch{1}{3}\pi*j}[/mm]
>  >  
> >
> [mm]z^7=128e^{-\bruch{1}{3}\pi*j}=128*cos(-60[/mm]°[mm])+128*sin(-60[/mm]°[mm])j \approx 64-110,851j[/mm]
>  
> >  

> > Ist das korrekt?
>
> Ja, aber die Darstellung ....
>  
> 1. 60° = [mm]\bruch{\pi}{3}[/mm]
>  
> 2. cos(-x)=cos(x), sin(-x)=-sin(x)
>  
> 3. 110,851  muss doch nicht sein !! Es ist
> [mm]z^7=64z=64(1-\wurzel{3}*j)[/mm]

Okay, das sieht natürlich schicker aus ;) Aber wie kommt man darauf? Doch erst nachdem man cos/sin angewendet hat? Oder gibt es da noch einen "Trick" der mir entgangen ist?

> FRED
>  

Ansonsten vielen Dank euch beiden!

Bezug
                                                        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mi 30.10.2013
Autor: fred97

Rechne nach: [mm] z^3=-8 [/mm]

Dann ist [mm] z^6=64, [/mm] also [mm] $z^7=64*z$ [/mm]

FRED

Bezug
                                                                
Bezug
Komplexe Zahlen, Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Mi 30.10.2013
Autor: jayw


> Rechne nach: [mm]z^3=-8[/mm]
>  
> Dann ist [mm]z^6=64,[/mm] also [mm]z^7=64*z[/mm]
>  
> FRED

Sehr elegant, aber wie komme ich darauf  zunächst [mm] z^3 [/mm] zu rechnen? Wenn ich das erkennen könnte, könnte ich mir wohlmöglich öfter mal den cos/sin Umweg sparen!?

Bezug
                                                                        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mi 30.10.2013
Autor: fred97


> > Rechne nach: [mm]z^3=-8[/mm]
>  >  
> > Dann ist [mm]z^6=64,[/mm] also [mm]z^7=64*z[/mm]
>  >  
> > FRED
>
> Sehr elegant, aber wie komme ich darauf  zunächst [mm]z^3[/mm] zu
> rechnen?

60°+60°+60°=180°

FRED

FRED



Wenn ich das erkennen könnte, könnte ich mir

> wohlmöglich öfter mal den cos/sin Umweg sparen!?


Bezug
                                                                                
Bezug
Komplexe Zahlen, Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 30.10.2013
Autor: jayw


> > > Rechne nach: [mm]z^3=-8[/mm]
>  >  >  
> > > Dann ist [mm]z^6=64,[/mm] also [mm]z^7=64*z[/mm]
>  >  >  
> > > FRED
> >
> > Sehr elegant, aber wie komme ich darauf  zunächst [mm]z^3[/mm] zu
> > rechnen?
>
> 60°+60°+60°=180°
>  
> FRED
>  

Ahhhh, also zunächst einen Exponenten wählen der mit [mm] \alpha [/mm] multipliziert [mm] \pi [/mm] ergibt (in diesem Fall 3, da [mm] \alpha=\bruch {\pi}{3}), [/mm] somit wird der imaginäre Teil 0 und ich bekomme eine reelle Zahl. Damit kann ich dann einfacher jedes [mm] z^n [/mm] darstellen.
Richtig?

Bezug
                                                                                        
Bezug
Komplexe Zahlen, Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 30.10.2013
Autor: fred97


> > > > Rechne nach: [mm]z^3=-8[/mm]
>  >  >  >  
> > > > Dann ist [mm]z^6=64,[/mm] also [mm]z^7=64*z[/mm]
>  >  >  >  
> > > > FRED
> > >
> > > Sehr elegant, aber wie komme ich darauf  zunächst [mm]z^3[/mm] zu
> > > rechnen?
> >
> > 60°+60°+60°=180°
>  >  
> > FRED
>  >  
>
> Ahhhh, also zunächst einen Exponenten wählen der mit
> [mm]\alpha[/mm] multipliziert [mm]\pi[/mm] ergibt (in diesem Fall 3, da
> [mm]\alpha=\bruch {\pi}{3}),[/mm] somit wird der imaginäre Teil 0
> und ich bekomme eine reelle Zahl. Damit kann ich dann
> einfacher jedes [mm]z^n[/mm] darstellen.
>  Richtig?

ja

FRED


Bezug
                                                                                                
Bezug
Komplexe Zahlen, Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Mi 30.10.2013
Autor: jayw

Super, herzlichen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]