matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:50 Sa 10.03.2012
Autor: mbau16

Aufgabe
Gegeben seien folgende Definitionen:

[mm] z_{1}=2e^{i*30Grad} [/mm]

[mm] z_{2}=4(cos\left(\bruch{\pi}{3}\right)+i*sin\left(\bruch{\pi}{3}\right)) [/mm]

Ermitteln Sie die Zahlen [mm] z_{3} [/mm] bis [mm] z_{6} [/mm] und stellen Sie [mm] z_{6} [/mm] in der trigonometrischen und eulerschen Form dar.


Guten Mittag,

habe gerade diesen Aufgabenblock gerechnet und möchte mir gerne dazu Eure Meinung einholen.

[mm] z_{1}=2e^{i*30Grad} [/mm]

[mm] z_{1}=2(cos(30Grad)+i*sin(30Grad)) [/mm]

[mm] z_{1}=2\left(\bruch{\wurzel{3}}{2}+i*\bruch{1}{2}\right) [/mm]

[mm] z_{1}=\wurzel{3}+i [/mm]

[mm] z_{2}=4(cos\left(\bruch{\pi}{3}\right)+i*sin\left(\bruch{\pi}{3}\right)) [/mm]

[mm] z_{2}=4\left(\bruch{1}{2}+i*\bruch{\wurzel{3}}{2}\right) [/mm]

[mm] z_{2}=2+i*2\wurzel{3} [/mm]

[mm] z_{3}=\wurzel{3}+z_{1}+(\wurzel{3}-z_{2})*\wurzel{3} [/mm]

[mm] z_{3}=\wurzel{3}+\wurzel{3}+i+(\wurzel{3}-2+i*2\wurzel{3})*\wurzel{3} [/mm]

[mm] z_{3}=2\wurzel{3}+i+3-2\wurzel{3}+6 [/mm]

[mm] z_{3}=9+i [/mm]

[mm] z_{4}=\wurzel{3}*(z_{1}-3i)*\bruch{z_{2}}{2} [/mm]

[mm] z_{4}=\wurzel{3}*(\wurzel{3}+i-3i)*\bruch{(2+i*2\wurzel{3})}{2} [/mm]

Zwischenfrage: Kann ich so kürzen?

[mm] z_{4}=(3+\wurzel{3}i-3\wurzel{3}i)*(2+i\wurzel{3}) [/mm]

[mm] z_{4}=(3-2\wurzel{3}i)(2+i\wurzel{3}) [/mm]

[mm] z_{4}=6+3i\wurzel{3}-4i\wurzel{3}-2i^{2}\wurzel{3} [/mm]

[mm] z_{4}=6+2\wurzel{3}-i\wurzel{3} [/mm]

[mm] z_{5}=\bruch{4z_{2}}{-z_{1}} [/mm]

[mm] z_{5}=\bruch{4(2+i*2\wurzel{3})}{-\wurzel{3}+i} [/mm]

[mm] z_{5}=\bruch{8+i8\wurzel{3}}{-\wurzel{3}+i} [/mm]

[mm] z_{5}=\bruch{8+i8\wurzel{3}}{-\wurzel{3}+i}*\bruch{\wurzel{3}+i}{\wurzel{3}+i} [/mm]

[mm] z_{5}=\bruch{8\wurzel{3}+8i+24i+8\wurzel{3}i^{2}}{-3-\wurzel{3}i+\wurzel{3}i+i^{2}} [/mm]

[mm] z_{5}=\bruch{32i}{3} [/mm]

Kein Realteil!

Auf der gaußschen Zahlenebene müsste sich [mm] z_{5} [/mm] auf der "y-Achse" befinden, oder nicht?

Ist es erstmal soweit richtig?

Vielen, vielen Dank!

Gruß

mbau16

        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Sa 10.03.2012
Autor: Marcel

Hallo,

> Gegeben seien folgende Definitionen:
>  
> [mm]z_{1}=2e^{i*30Grad}[/mm]
>  
> [mm]z_{2}=4(cos\left(\bruch{\pi}{3}\right)+i*sin\left(\bruch{\pi}{3}\right))[/mm]
>  
> Ermitteln Sie die Zahlen [mm]z_{3}[/mm] bis [mm]z_{6}[/mm] und stellen Sie
> [mm]z_{6}[/mm] in der trigonometrischen und eulerschen Form dar.

das kann nicht die ganze Aufgabe sein. Woher sollen denn [mm] $z_3,...,z_6$ [/mm] aus diesen Voraussetzungen kommen, wenn keine Bedingungen an diese gestellt werden?

Gruß,
Marcel

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Sa 10.03.2012
Autor: mbau16

Hallo zusammen,

doch, dass ist die gesamte Aufgabe. [mm] z_{3}-z_{6} [/mm] müssen ermittelt werden. [mm] z_{1} [/mm] und [mm] z_{2} [/mm] sind gegeben. Die Aufgaben stehen im Artikeltext. Schaut doch nochmal bitte!


> Gegeben seien folgende Definitionen:
>  
> [mm]z_{1}=2e^{i*30Grad}[/mm]
>  
> [mm]z_{2}=4(cos\left(\bruch{\pi}{3}\right)+i*sin\left(\bruch{\pi}{3}\right))[/mm]
>  
> Ermitteln Sie die Zahlen [mm]z_{3}[/mm] bis [mm]z_{6}[/mm] und stellen Sie
> [mm]z_{6}[/mm] in der trigonometrischen und eulerschen Form dar.
>  
> Guten Mittag,
>  
> habe gerade diesen Aufgabenblock gerechnet und möchte mir
> gerne dazu Eure Meinung einholen.
>
> [mm]z_{1}=2e^{i*30Grad}[/mm]
>  
> [mm]z_{1}=2(cos(30Grad)+i*sin(30Grad))[/mm]
>  
> [mm]z_{1}=2\left(\bruch{\wurzel{3}}{2}+i*\bruch{1}{2}\right)[/mm]
>  
> [mm]z_{1}=\wurzel{3}+i[/mm]
>  
> [mm]z_{2}=4(cos\left(\bruch{\pi}{3}\right)+i*sin\left(\bruch{\pi}{3}\right))[/mm]
>  
> [mm]z_{2}=4\left(\bruch{1}{2}+i*\bruch{\wurzel{3}}{2}\right)[/mm]
>  
> [mm]z_{2}=2+i*2\wurzel{3}[/mm]


> [mm]z_{3}=\wurzel{3}+z_{1}+(\wurzel{3}-z_{2})*\wurzel{3}[/mm]


> [mm]z_{3}=\wurzel{3}+\wurzel{3}+i+(\wurzel{3}-2+i*2\wurzel{3})*\wurzel{3}[/mm]
>  
> [mm]z_{3}=2\wurzel{3}+i+3-2\wurzel{3}+6[/mm]
>  
> [mm]z_{3}=9+i[/mm]

  

> [mm]z_{4}=\wurzel{3}*(z_{1}-3i)*\bruch{z_{2}}{2}[/mm]


> [mm]z_{4}=\wurzel{3}*(\wurzel{3}+i-3i)*\bruch{(2+i*2\wurzel{3})}{2}[/mm]

Zwischenfrage: Kann ich so kürzen?

> [mm]z_{4}=(3+\wurzel{3}i-3\wurzel{3}i)*(2+i\wurzel{3})[/mm]
>  
> [mm]z_{4}=(3-2\wurzel{3}i)(2+i\wurzel{3})[/mm]
>  
> [mm]z_{4}=6+3i\wurzel{3}-4i\wurzel{3}-2i^{2}\wurzel{3}[/mm]
>  
> [mm]z_{4}=6+2\wurzel{3}-i\wurzel{3}[/mm]


> [mm]z_{5}=\bruch{4z_{2}}{-z_{1}}[/mm]


> [mm]z_{5}=\bruch{4(2+i*2\wurzel{3})}{-\wurzel{3}+i}[/mm]
>  
> [mm]z_{5}=\bruch{8+i8\wurzel{3}}{-\wurzel{3}+i}[/mm]
>  
> [mm]z_{5}=\bruch{8+i8\wurzel{3}}{-\wurzel{3}+i}*\bruch{\wurzel{3}+i}{\wurzel{3}+i}[/mm]
>  
> [mm]z_{5}=\bruch{8\wurzel{3}+8i+24i+8\wurzel{3}i^{2}}{-3-\wurzel{3}i+\wurzel{3}i+i^{2}}[/mm]
>  
> [mm]z_{5}=\bruch{32i}{3}[/mm]
>  
> Kein Realteil!
>  
> Auf der gaußschen Zahlenebene müsste sich [mm]z_{5}[/mm] auf der
> "y-Achse" befinden, oder nicht?
>  
> Ist es erstmal soweit richtig?
>  
> Vielen, vielen Dank!
>  
> Gruß
>  
> mbau16


Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Sa 10.03.2012
Autor: Marcel

Hallo,

> Hallo zusammen,
>  
> doch, dass ist die gesamte Aufgabe. [mm]z_{3}-z_{6}[/mm] müssen
> ermittelt werden. [mm]z_{1}[/mm] und [mm]z_{2}[/mm] sind gegeben.

ohne irgendeine Bedingung, die die [mm] $z_k$ [/mm] generell bestimmen (rekursive Definition, explizite Darstellung, ...) ist dann die Aufgabe nicht vollständig gestellt!

> Die
> Aufgaben stehen im Artikeltext. Schaut doch nochmal bitte!

Wie gesagt: Dann setze ich einfach per Definitionem [mm] $z_3:=...:=z_6:=0$ [/mm] und erspare mir jede Mühe. Denn warum soll ich da was anderes machen, wenn es keine Bedingung an die [mm] $z_k$ [/mm] gibt? Dann kann ich machen, was ich will...

Sorry, ist aber so: Entweder schaust Du nochmal genau in den Aufgabentext, oder Du fragst denjenigen, der die Aufgabe gestellt hat. Schlimmstenfalls müßte er wenigstens dazuschreiben, dass man die Folge "intuitiv fortsetzen" sollte. Und selbst dann: Meine Intuition ist vll. ne andere, wie bei Dir. Ich bin intuitiv faul ^^

Gruß,
Marcel

Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 10.03.2012
Autor: ullim

Hi,

wahrscheinlich ist die folgende Folge gemeint

[mm] f(k)=2^k*e^{i*\bruch{\pi}{6}*k} [/mm]

zumindest stimmen die ersten beiden Folgenglieder.

Dann musst Du das aber nochmal berechnen, denn Deine Ergebnisse stimmen nicht mit dem oben überein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]