matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Logarithmengesetze gültig?
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 08.07.2005
Autor: ocram

wie verhält sich das beim Logarithmieren im Komplexen mit den Logarithmengesetzen? In mehreren Mathebüchern finde ich, dass die Logarithmengesetze dieselben sind wie im reellen.

Was ist aber mit diesen Beispielen, die ich auf einer Internetseite gefunden habe?

ln(-1) + ln(-1)=

nach Logarithmengesetz könnte ich ja umformen:

= ln((-1)*(-1)) = ln(1) = 0

einzeln ausgerechnet ergäbe sich aber:

ln(-1) + ln(-1) =ln (e hoch i  [mm] \pi) [/mm] + ln ( e hoch i [mm] \pi) [/mm] =2 [mm] \pi [/mm] i

Was ist denn da nun richtig? Wie muss ich rechnen, damit ich keine Fehler mache?
Dieses und ein weiteres Beispiel habe ich auf www.netzwelt.de/lexikon/Logarithmus.html gefunden


mfg
ocram
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Fr 08.07.2005
Autor: Julius

Hallo!

Die Logarithmen- und Potenzgesetze gelten im Komplexen (im Allgemeinen) natürlich nicht.

Vergleiche dazu auch diesen Beitrag.

Man hat etwa

[mm] $Log(z_1z_2)= [/mm] Log [mm] (z_1) [/mm] + Log [mm] (z_2)$ [/mm]

genau dann, wenn für die in [mm] $]-\pi,\pi[$ [/mm] gelegenen Argumente [mm] $arg(z_1)$ [/mm] und [mm] $arg(z_2)$ [/mm] auch

[mm] $arg(z_1) [/mm] + [mm] arg(z_2) \in ]-\pi,\pi[$ [/mm]

gilt.

An die Moderatoren: Bitte die Frage + Antwort ins Funktionentheorie-Forum verschieben, Danke. :-)

Viele Grüße
Julius

Bezug
                
Bezug
Komplexe Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:00 Fr 08.07.2005
Autor: ocram

Danke erstmal für Antwort
dass das zur funktionentheorie gehört wusst ich nicht , sorry

aber jetzt nur noch mal ob ichs gerafft habe was du mit deinem offenen Intervall meintest:

Ich könnte das Logarithmengesetz also anwenden für beispielsweise
[mm] 3*e^{i0,1 \pi} [/mm] und  [mm] 2*e^{i0,3 \pi} [/mm] da ja beide Argumente innerhalb des Intervalls liegen und auch die Summer der beiden Argumente innerhalb liegt.

Und jetzt zu der Sache mit den Zweigen

bei ln(-1) + ln(-1) = ln(-1*-1) müsste ich also folgendermaßen weiterrechnen, um zur richtigen Lösung zu kommen:

= [mm] ln(e^{i \pi}*e^{i \pi})=ln(e^{2 \pi i +k2 \pi i })=ln(e^{0+k2 \pi i}=0+2k \pi [/mm] i

da der Hauptwert k=0 eine falsch Aussage ergäbe, muss ich den Nebenwert k=1 nutzen und erhalte 2 [mm] \pi [/mm] i las Lösung

Ich hoffe ich liege einigermaßen richtig

mfg
ocram

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Sa 09.07.2005
Autor: Julius

Hallo ocram!

> Ich könnte das Logarithmengesetz also anwenden für
> beispielsweise
>  [mm]3*e^{i0,1 \pi}[/mm] und  [mm]2*e^{i0,3 \pi}[/mm] da ja beide Argumente
> innerhalb des Intervalls liegen und auch die Summer der
> beiden Argumente innerhalb liegt.

Ja, es gilt:

$Log(3 [mm] \cdot e^{i0,1\pi} \cdot 2e^{i0,3\pi}) [/mm] = [mm] Log(3\cdot e^{i0,1\pi}) [/mm] + [mm] Log(2\cdot e^{i0,3\pi})$. [/mm]

> Und jetzt zu der Sache mit den Zweigen
>  
> bei ln(-1) + ln(-1) = ln(-1*-1)

Diese Gleichheit gilt im Folgenden Sinne:

Es gibt Zweige [mm] $Log_1$, $Log_2$ [/mm] des Logarithmus mit

[mm] $Log_1(-1) [/mm] + [mm] Log_1(-1) [/mm] = [mm] Log_2((-1) \cdot [/mm] (-1))$.

> müsste ich also
> folgendermaßen weiterrechnen, um zur richtigen Lösung zu
> kommen:
>  
> = [mm]ln(e^{i \pi}*e^{i \pi})=ln(e^{2 \pi i +k2 \pi i })=ln(e^{0+k2 \pi i}=0+2k \pi[/mm]
> i
>  
> da der Hauptwert k=0 eine falsch Aussage ergäbe, muss ich
> den Nebenwert k=1 nutzen und erhalte 2 [mm]\pi[/mm] i las Lösung

Ja, so kann man es sagen. [ok]  

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]