matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 02.06.2004
Autor: Manuela

Seien b, c Element C. Bestimmen Sie den Real- und Imaginärteil der Lösung der Gleichung
[mm] z^2+bz+c=0 [/mm]

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 02.06.2004
Autor: Stefan

Liebe Manuela!

> Seien b, c Element C. Bestimmen Sie den Real- und
> Imaginärteil der Lösung der Gleichung
>   [mm] z^2+bz+c=0 [/mm]

Zunächst einmal gilt auch im Komplexen die p-q-Formel, hier also:

[mm] $z_{1,2} [/mm] = [mm] -\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4} - c}$, [/mm]

wobei [mm] $\sqrt{\frac{b^2}{4}-c}$ [/mm] für die beiden möglichen komplexen Wurzeln steht.

Die Schwierigkeit besteht also darin, die beiden Wurzeln von

[mm] $\frac{b^2}{4}-c$ [/mm]

zu finden.

Wie aber findet man die Wurzel einer komplexen Zahl?


Satz:

Aus einer komplexen Zahl [mm] $\red{w=u+iv}$ [/mm] kann man genau zwei Quadratwurzeln ziehen. Insbesondere ist in [mm] $\IC$ [/mm] jede quadratische Gleichung [mm] $\red{z^2 + bz + c}$ [/mm] lösbar.


Beweis:

Wir schreiben $z=x+iy$. Dann gilt

[mm] $z^2 [/mm] = [mm] (x^2 [/mm] - [mm] y^2) [/mm]  + i2xy = u+iv = w$

genau dann, wenn

[mm] $x^2 [/mm] - [mm] y^2 [/mm] = u$,
$2xy = v$,

gilt. Das heißt aber:

[mm] $x^2 [/mm] -  [mm] \frac{v^2}{4x^2} [/mm] = u$

oder besser:

[mm] $x^4 [/mm]  - [mm] ux^2 [/mm]  = [mm] \frac{v^2}{4}$. [/mm]

Diese Gleichung hat eine reelle Lösung, nämlich:

$x= [mm] \frac{\sqrt{u + \sqrt{ u^2 + v^2}}}{\sqrt{2}}$. [/mm]

Man hat dann noch:

$y = [mm] \frac{v}{2x}$ [/mm]

und damit die erste Lösung [mm] $z_1=x+iy$ [/mm] der Gleichung [mm] $z^2=w$ [/mm] bestimmt.

Die zweite ist gegeben durch [mm] $z_2 [/mm] = - [mm] z_1$. [/mm]


Was musst du nun also tun?

Du musst erst einmal mit den gerade vorgestellten Formeln die beiden komplexen Wurzeln von

[mm] $\frac{b^2}{4}-c$ [/mm]

bestimmen.

Dann erhältst du die beiden Lösungen:

[mm] $z_{1,2} [/mm] = [mm] -\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4} - c}$. [/mm]

Diese kannst du nach Real- und Imaginärteil separieren.


Es mag sein, dass das auch schneller geht, nur sehe ich es gerade nicht.

Liebe Grüße
Stefan


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]