matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Komplexe Zahlen
Komplexe Zahlen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Fr 15.05.2009
Autor: T_sleeper

Aufgabe
Seien c,d [mm] \in \mathbb{C}. [/mm]

Zeige: [mm]c+d,c\cdot d [/mm] reell [mm] \Leftrightarrow [/mm] c,d reell oder [mm] d=\overline{c}. [/mm]

Hallo,

also [mm] "\Leftarrow" [/mm] ist reines durchrechnen und nicht besonders schwer.
Fragen habe ich nur zu [mm] "\Rightarrow". [/mm]
Dazu:
Seien also c+d, cd reell. Dann z.z. c,d reell oder [mm] d=\overset{-}c. [/mm]
Ich weiß ja, dass c,d an sich komplex sind. Also kann ich sie auch so schreiben: [mm] c=x_1+iy_1, d=x_2+iy_2 [/mm] mit [mm] x_1,x_2,y_1,y_2 \in \mathbb{R}. [/mm]
Ich dachte mir jetzt, dass ich einfach c+d=a setze mit [mm] a\in \mathbb{R}. [/mm]
Das gleiche mache ich dann mit cd=b [mm] \in \mathbb{R}. [/mm]
Wenn ich da dann c und d entsprechend mit [mm] x_1+iy_1 [/mm] usw schreibe und versuche das durchzurechnen, komme ich immer zu einem ziemlichen Durcheinander. Hatte mir das quasi so gedacht:
[mm] c+d=a\Rightarrow [/mm] d=a-c. Das setze ich dann in cd=b ein und es folgt:
[mm] c\cdot [/mm] (a-c)=b.
Aber wie gesagt: das führt mich nicht so ganz dahin, wo ich hin will.

Kann man es besser machen?

Gruß Sleeper

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Fr 15.05.2009
Autor: abakus


> Seien c,d [mm]\in \mathbb{C}.[/mm]
>  
> Zeige: [mm]c+d,c\cdot d[/mm] reell [mm]\Leftrightarrow[/mm] c,d reell oder
> [mm]d=\overline{c}.[/mm]
>  Hallo,
>  
> also [mm]"\Leftarrow"[/mm] ist reines durchrechnen und nicht
> besonders schwer.
>  Fragen habe ich nur zu [mm]"\Rightarrow".[/mm]

Hallo, wenn c+d reell sein sollen, müssen sich eventuell vorhandene Imaginärteile aufheben.
Wenn c*d reel sein soll, muss [mm] r_c(cos\phi_c+i [/mm] sin [mm] \phi_c)* r_d(cos\phi_d+i [/mm] sin [mm] \phi_d) [/mm] reell sein, und damit ist das Argument [mm] \phi_c+\phi_d [/mm] Null.
Denk mal drüber nach.
Gruß Abakus

>  Dazu:
>  Seien also c+d, cd reell. Dann z.z. c,d reell oder
> [mm]d=\overset{-}c.[/mm]
>  Ich weiß ja, dass c,d an sich komplex sind. Also kann ich
> sie auch so schreiben: [mm]c=x_1+iy_1, d=x_2+iy_2[/mm] mit
> [mm]x_1,x_2,y_1,y_2 \in \mathbb{R}.[/mm]
> Ich dachte mir jetzt, dass ich einfach c+d=a setze mit [mm]a\in \mathbb{R}.[/mm]
>  
> Das gleiche mache ich dann mit cd=b [mm]\in \mathbb{R}.[/mm]
>  Wenn
> ich da dann c und d entsprechend mit [mm]x_1+iy_1[/mm] usw schreibe
> und versuche das durchzurechnen, komme ich immer zu einem
> ziemlichen Durcheinander. Hatte mir das quasi so gedacht:
>  [mm]c+d=a\Rightarrow[/mm] d=a-c. Das setze ich dann in cd=b ein und
> es folgt:
>  [mm]c\cdot[/mm] (a-c)=b.
>  Aber wie gesagt: das führt mich nicht so ganz dahin, wo
> ich hin will.
>  
> Kann man es besser machen?
>  
> Gruß Sleeper


Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 18.05.2009
Autor: fred97

Zu $ [mm] "\Rightarrow". [/mm] $

Du hattest: $c = [mm] x_1+iy_1, [/mm] d = [mm] x_2 +iy_2$ [/mm]

Ist c+d reell, so folgt: [mm] $y_1+y_2 [/mm] = 0$, also [mm] $y_2 [/mm] = [mm] -y_1$: [/mm] Somit: $ [mm] d=\overline{c}. [/mm] $.

Ist auch noch [mm] y_1 [/mm] = 0, so folgt $c,d [mm] \in \IR$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]