matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Mi 09.04.2008
Autor: Hello-Kitty

Aufgabe
Berechne:
a.)(-i)^(4n), (-i)^(4n+1), (-i)^(4n+2), -i)^(4n+3) für [mm] n\in \IN [/mm]
b.)Berechne:
i^-9, i^-17, i^-27, i^-38

Hallöchen..
Das ist unser neues Thema und ich stocke etwas dabei..
Ich hab mir erstmal durüber gedanken gemacht wie viel i^-1 wäre..

Das sind laut meiner Rechnung:
i^-1= 1/t (erweitern)= 1/i*i/i= i/-i= -i

Stimmt das soweit?

Aber wie geht das nun bei den andren?
a versteh ich leider kaum

und bei b dachte ich:
i^-9= 9/i= 9/i* i/i= 9i/-i= -9i?

Ich würde mich über Hilfe sehr freuen.
Danke

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Mi 09.04.2008
Autor: angela.h.b.


> Berechne:
>  a.)(-i)^(4n), (-i)^(4n+1), (-i)^(4n+2), -i)^(4n+3) für
> [mm]n\in \IN[/mm]
>  b.)Berechne:
>  i^-9, i^-17, i^-27, i^-38
>  Hallöchen..
>  Das ist unser neues Thema und ich stocke etwas dabei..
>  Ich hab mir erstmal durüber gedanken gemacht wie viel i^-1
> wäre..
>  
> Das sind laut meiner Rechnung:
>  i^-1= 1/t (erweitern)= 1/i*i/i= i/-i= -i

Hallo,

kann es sein, daß Du das irgendwo verkehrt abgeschrieben hast? Das ist nämlich ein ziemlicher Unfug - und Du bekommst am Ende trotzdem das richtige Ergebnis.

Bevor Du irgendetwas tust, mußt Du wissen, daß i*i=-1 ist.

[mm] i^{-1} [/mm] bedeutet [mm] \bruch{1}{i^1}=\bruch{1}{i}. [/mm]

Also ist [mm] i^{-1}=\bruch{1}{i}=\bruch{1}{i}*\bruch{i}{i}=\bruch{i}{i*i}=\bruch{i}{-1}=-i [/mm]

> Aber wie geht das nun bei den andren?
>  a versteh ich leider kaum

Du wirst Dich zunächst um die MBPotenzgesetze kümmern müssen, und danach kannst Du auch

>  i^-9

bewältigen.

Hilfreich ist es sicher auch, wenn Du mal

[mm] i^2, i^3, i^4, i^5, i^6, i^7, i^8 [/mm] berechnest, damit Du erfährst, wie diese Imaginärzahl funktioniert.

Wenn Du das getan hast, melde Dich ruhig mit weiteren Fragen und Erkenntnissen.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]