matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:57 Do 27.12.2007
Autor: euromark

Aufgabe
Stelle in der From a+bi dar:
a) i - 1/i
b) [mm] i^2 [/mm] - [mm] 1/i^3 [/mm]
c) [mm] (i+1/i)^2 [/mm]
d) [mm] (i^9 [/mm] - [mm] i^14)^2 [/mm]
e) [mm] (-1)^2 [/mm] + [mm] 1/i^2 [/mm]
f) [mm] (-2i)^3 [/mm] + [mm] 2/i^3 [/mm]
g) (-i)^-3 + [mm] 3i^3 [/mm]
h) i^-7 + [mm] (-i)^8 [/mm]

kann mir bitte jemand weiterhelfen.
Ich habe zum erstenmal mit komplexen Zahlen zu tun.
Ich bin Nachhilfelehrer und will mich in diesem Themenbereich auch auskennen.
Vielen dank im voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 27.12.2007
Autor: angela.h.b.


> Stelle in der From a+bi dar:
>  a) i - 1/i
>  b) [mm]i^2[/mm] - [mm]1/i^3[/mm]
>  c) [mm](i+1/i)^2[/mm]
>  d) [mm](i^9[/mm] - [mm]i^14)^2[/mm]
>  e) [mm](-1)^2[/mm] + [mm]1/i^2[/mm]
>  f) [mm](-2i)^3[/mm] + [mm]2/i^3[/mm]
>  g) (-i)^-3 + [mm]3i^3[/mm]
>  h) i^-7 + [mm](-i)^8[/mm]
>  kann mir bitte jemand weiterhelfen.

Hallo,

[willkommenmr].

Um Dir "weiter"zuhelfen, müßten wir zunächst einmal wissen, wie weit Du bisher gekommen bist.

Wo liegt Dein Problem mit diesen Aufgaben?

Beachte bitte unsere Forenregeln, insbesondere den Passus über eigene Lösungsansätze, auf welche wir großen Wert legen, damit wir effektiv helfen können.

Kleine Hinweise:

Was ist [mm] i^2, [/mm] was [mm] i^3, i^4, i^5? [/mm]

Brüche der Gestalt [mm] \bruch{a+ib}{c+id} [/mm] bekommst Du im Nenner wie folgt rational:

[mm] \bruch{a+ib}{c+id}=\bruch{a+ib}{c+id}\bruch{c-id}{c-id}=\bruch{(a+ib)(c-id)}{c^2+d^2} [/mm]

Gruß v. Angela






Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Do 27.12.2007
Autor: euromark

auf das Ergebnis würde ich ja kommen. z.B. i-1/i = 2i
[mm] i^2 [/mm] = -1
mein Problem ist, ich komme nicht mit der Fragestellung zu recht.
Wäre das ergebnis dann 0 + [mm] 2i^2? [/mm]
Gruß Markus

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Do 27.12.2007
Autor: angela.h.b.


> auf das Ergebnis würde ich ja kommen. z.B. i-1/i = 2i
>  [mm]i^2[/mm] = -1
>  mein Problem ist, ich komme nicht mit der Fragestellung zu
> recht.
>  Wäre das ergebnis dann 0 + [mm]2i^2?[/mm]

Ich nehme an, daß es nur ein Tippfehler ist:

es müßte bei obiger Aufgabe stehen i-1/i = 2i=0+2i.

Es darf nichts vorkommen mit Potenzen von i, oder Terme mit "geteilt durch i", sondern die Ergebnisse sollen in der Form

reelle Zahl + i*(reelle Zahl) dargestellt werden.

Gruß v. Angela

Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Do 27.12.2007
Autor: euromark

Vielen dank.
Dann ist also 0 = a
und 2 = b ?

Gruß Markus

Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Do 27.12.2007
Autor: schachuzipus

Hallo euromark,

> Vielen dank.
>  Dann ist also 0 = a
>  und 2 = b ? [ok]

Klaro

>  
> Gruß Markus


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]