matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Komplexe Zahlen
Komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Infomaterial
Status: (Frage) beantwortet Status 
Datum: 22:10 So 26.12.2004
Autor: maria

Hallo!! Weiß jemand, wo ich Informatinsmaterial im Internet über Lösung für Sonderfälle(komplexer Zahlen) finde, also zur Lösung von [mm] z^n=c. [/mm] Das was wir in der Vorlesung gemacht haben verstehe ich nicht und in meinen Büchern steht nix darüber. Gegoogelt hab ich auch schon ein bissl. Fehlschlag! Über komplexe Zahlen gibts zwar viel, aber nicht über Lösung von Sonderfällen. Habt ihr ne Idee?

        
Bezug
Komplexe Zahlen: Eulersche Formel
Status: (Antwort) fertig Status 
Datum: 23:05 So 26.12.2004
Autor: MathePower

Hallo,

die Gleichung  [mm]z^{n}=c[/mm] ist einfach zu lösen.

Hier gilt die Eulersche Formel:

[mm]e^{i\phi}=cos(\phi} + i sin(\phi)[/mm]

Hieraus folgt:

[mm] c = r e^{i\phi} = r ( cos(\phi) + i sin(\phi) ) = a + bi[/mm]

Dann gilt:

[mm] z^{n} = c = e^{i\phi}[/mm]

=> [mm] z = \wurzel[n]{c} = \wurzel[n]{r} e^{i \bruch{\phi}{n} }[/mm]

=> [mm] z_k = \wurzel[n]{r} e^{i \bruch{\phi + 2k\pi}{n} } = \wurzel[n]{r} ( cos(\bruch{\phi + 2k\pi}{n}) + i sin(\bruch{\phi + 2k\pi}{n})[/mm]

Gruss
MathePower

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:25 So 26.12.2004
Autor: maria

Hallo. Danke erstmal, aber ich verstehe noch nicht so ganz, was du da geschrieben hast.
$ c = r [mm] e^{i\phi} [/mm] $ wieso? [mm] c=z^n [/mm] und nicht c=z, oder? verstehst du was ich mein?
$ [mm] z^{n} [/mm] = c = [mm] e^{i\phi} [/mm] $ das widerspricht dem, was du oben geschrieben hast $ c = r [mm] e^{i\phi} [/mm] $, oder?
$ z = [mm] \wurzel[n]{c} [/mm] = [mm] \wurzel[n]{r} e^{i \bruch{\phi}{n} } [/mm] $ auch hier verstehe ich nicht, wie du auf das c kommst. Der Rest ist logisch. Bitte befreie mich von meiner Unwissenheit!! Das wäre sehr nett!

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Mo 27.12.2004
Autor: e.kandrai

Ich hoffe, ich kann deine Fragen an ihn auch vernünftig beantworten.

Zuerstmal: eine komplexe Zahl [mm]c\in\IZ[/mm] lässt sich auch in der Form [mm]c=r \cdot e^{i \cdot \phi}[/mm] schreiben, wobei [mm]r[/mm] der Betrag, und [mm]\phi[/mm] das Argument der komplexen Zahl ist.

Gesucht sind ja hier alle komplexen Zahlen z, für die gilt: [mm]z^n=c[/mm].
Und diese Zahl (ob man sie jetzt [mm]z^n[/mm] schreibt, oder c, ist egal) kann man eben umschreiben als [mm]z^n = c = r \cdot e^{i \cdot \phi}[/mm].
Zuerstmal ist also [mm]z^n=r \cdot e^{i \cdot \phi}[/mm], und erst im Folgenden wird bestimmt, welche Werte das z annehmen kann.
Ich hoffe, ich habe diese erste Frage von dir richtig verstanden.

>  [mm]z^{n} = c = e^{i\phi}[/mm] das widerspricht dem, was du oben
> geschrieben hast [mm]c = r e^{i\phi} [/mm], oder?

Einen Widerspruch kann ich darin nicht finden, nur dass er einen Faktor r vergessen hat: [mm]z^{n} = c = r \cdot e^{i\phi}[/mm] müsste es richtig heißen, dann gibt's bis hierhin keinen Widerspruch.

>  [mm]z = \wurzel[n]{c} = \wurzel[n]{r} e^{i \bruch{\phi}{n} }[/mm]
> auch hier verstehe ich nicht, wie du auf das c kommst.

Auch hier ist es wieder nur eine Umformung: aus [mm]z^n=c[/mm] wird [mm]z=\wurzel[n]{c}[/mm], wobei immernoch [mm]c=r \cdot e^{i \cdot \phi}[/mm] ist.

Und was das k in der Gleichung soll: eine Gleichung vom Grad n wird dir n Lösungen liefern. Kannst das ja mal an [mm]z^3=1[/mm] oder [mm]z^6=1[/mm] ausprobieren.

Bezug
                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Mo 27.12.2004
Autor: maria

Dank an euch beiden. DIESES Thema hab ich jetzt durch eure Hilfe verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]