matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Komplexe Zahlen
Komplexe Zahlen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Aufgabe+Lösungsansätze
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 09.01.2007
Autor: SusiSunny

Aufgabe
Ermitteln Sie sämtliche Zahlen z [mm] \in\ \IC [/mm] , die den folgenden Gleichungen genügen:
a) [mm] z^4 [/mm] = -16
b) [mm] z^3 [/mm] + [mm] 3iz^2 [/mm] - 3z - 9i = 0 (Hinweis: kubische Ergänzung)
c) [mm] z^2 [/mm] - 3z + 3 - i = 0 (Hinweis: Der Ansatz [mm] (x+iy)^2 [/mm] = a+ib führt auf die nichtlinearen Gleichungen [mm] x^2 [/mm] + [mm] y^2 [/mm] = [mm] \wurzel{a^2 + b^2} [/mm] und [mm] x^2 [/mm] - [mm] y^2 [/mm] = a zur Bestimmung von x und y).

Hi!! Zunächst wünsch ich ein frohes und gesundes neues Jahr, obwohl es nen bisschen spät ist!!
Also ich hab zu allen drei Aufgaben Lösungsansätze, hänge dann aber an bestimmten Punkten, aber der Reihe nach:
a) Hier hab ich bereits 4 verschiedene Lösungen, weiß aber nun nicht, ob die so richtig sind!!
[mm] z_1 [/mm] = [mm] 2*e^{i*\bruch{\ pi}{4}} [/mm]
[mm] z_2 [/mm] = [mm] 2*e^{i*\bruch{\pi}{2}} [/mm] = 2
[mm] z_3 [/mm] = [mm] 2*e^{i*\bruch{3*\pi}{4}} [/mm]
[mm] z_4 [/mm] = [mm] 2*e^{i*\pi} [/mm] = -2

b) hier hab ich die Gleichung in ein Polynom umgeformt, aber da das Wurzelziehen keine äquivalente Umformungsregel ist, weiß ich hier nicht weiter:
Also ich hab hier: [mm] (z+i)^3 [/mm] = -8i

c) Hier hab das Binom zusammengefasst, aber weiß nun auch nicht mehr weiter!!
[mm] (z-1,5)^2 [/mm] = -0,75 + i

Also ich hoffe mir kann jemand bei den Aufgaben weiterhelfe und bedanke mich schonmal im Voraus!!

MfG, SusiSunny

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Substitution
Status: (Antwort) fertig Status 
Datum: 19:22 Di 09.01.2007
Autor: Infinit

Hallo SusiSunny,
der Teil a) sieht doch gut aus und auch die Umformungen zu b) und c) bringen schöne Ergebnisse. Jetzt hast Du eine komplexe Unbekannte, die linear um einen bestimmten Wert in der komplexen Ebene verschoben ist. Da hilft die Substitution weiter. Betrachte die Werte in den Klammern auf der linken Seite der Gleichungen als eine neue Variable u beispielsweise, dann lassen sich die Gleichungen lösen und anschließend machst Du die Substitution wider rückgängig.
Viel Spaß dabei wünscht
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]