matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: wie geht man vor?
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 28.11.2006
Autor: Mankiw

Hallo,
ich habe schon wieder mal ne frage.
Ich soll alle komplexen Zahlen mit a) z²=1, b) z³=1 c) [mm] z^{4}=1 [/mm] in der Form z=a+ib bestimmen.
Leider hab ich keinen Schimmer wie ich da anfangen soll. Kann mir jemand erklären, was ich überhaupt machen soll, bzw. was so richtig gesucht ist?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 28.11.2006
Autor: Brinki

Die Zahlen befinden sich allesamt auf dem Einheitskreis. Nur so kann der Realteil beim Potenzieren 1 werden.

Teile die Kreislinie  in zwei Teile, dann findest du die Zahl die quadriert 1 ergibt. Natürlich gehört auch die Zahl 1 selbst hinzu.

Bei der 4. Potenz Teile den Einheitskreis in vier Teile.

usw.

Grüße
Brinki

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 28.11.2006
Autor: Mankiw

wat? wasn fürn Einheitskreis? Über sowas haben wir in der Vorlesung gar nicht gesprochen...

Bezug
                        
Bezug
Komplexe Zahlen: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 23:39 Di 28.11.2006
Autor: Loddar

Hallo Mankiw!


Alternativ kannst Du auch die []Moivre-Formel für die Berechnung der Wurzeln anwenden:

[mm] $\wurzel[n]{z} [/mm] \ = \ [mm] \wurzel[n]{r}*\left[\cos\left(\bruch{\varphi+k*2\pi}{n}\right)+i*\sin\left(\bruch{\varphi+k*2\pi}{n}\right)\right]$ [/mm]   mit   $k \ =\ 0...(n-1)$


Gruß
Loddar


Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 29.11.2006
Autor: Mankiw

leider, haben wir diese Formel auch noch nicht eingeführt, und darf deswegen nicht verwendet werden :-(

Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 29.11.2006
Autor: Herby

Hallo Mankiw,


aber das Potenzieren hattet ihr doch sicher und die Identität:


[mm] r*e^{i\varphi}=r*(cos(\varphi)+sin(\varphi)) [/mm]


müsstet ihr auch schon durchgesprochen haben, oder nicht [keineahnung]

Außerdem ist ebenfalls sicher bekannt, dass z.B. [mm] cos(\varphi)=cos(\varphi+2k\pi) [/mm] ist; für alle [mm] k\in\IN [/mm]



Die Formel von Moivre ergibt daraus, und kann daher verwendet werden - vielleicht könntest du ja mal dein Skript reinstellen



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]