matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: welche Lösung stimmt?
Status: (Frage) beantwortet Status 
Datum: 13:16 Sa 18.03.2006
Autor: Esperanza

Aufgabe
[mm] z=\wurzel{2}i-2 [/mm]

Bestimme [mm] z^6 [/mm] und alle wEC mit [mm] w^2=z [/mm] in arithmetischer Form.

Ich habe mal wieder eine Lösung vor mir liegen die für mich unlogisch ist. Sie lautet:

[mm] z=\wurzel{6}(cos144,7°+isin144,7°) [/mm] , [mm] z^6=-184+133,14i [/mm] , w1=-0,47-1,49i , w2=0,47+1,49i

Ich hab erstmal  |z| bestimmt und kam auf  [mm] \wurzel{6} [/mm]

Das ist klar.

Dann wollte ich den Winkel bestimmen:

[mm] tan\phi=\bruch{Imaginärteil}{Realteil} [/mm] richtig?

Also [mm] tan\phi=\bruch{\wurzel{2}}{-2} [/mm] richtig?

Da würde ich auf -45° kommen. Da z im 2.Quadranten liegt hätt ich jetzt noch 90° dazuaddieren müssen oder?

Das stimmt doch aber nicht mit der angegebenen Lösung überein.

Durch probieren hab ich herausgefunden:

[mm] tan\phi=\bruch{-2}{\wurzel{2}}\sim-1,414 [/mm]

GTR: [mm] tan^{-1}-1,414=-54,73 [/mm]

Und das minus 90° ergibt -144,7°

Fragen: Warum wurde hier Realteil durch Imaginärteil gerechnet?
Wieso haben die einen positiven Winkel raus? (Denn wenn ich es so mache wie die komme ich auf was negatives. s.o.)

Bei der zweiten Teilaufgabe weiß ich nicht wie ich rangehen muss.

Weiß irgendjemand Rat?

Danke, Esperanza

        
Bezug
Komplexe Zahlen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 18.03.2006
Autor: Loddar

Hallo Esperanza!


> Dann wollte ich den Winkel bestimmen:
> [mm]tan\phi=\bruch{Imaginärteil}{Realteil}[/mm] richtig?

[ok]

  

> Also [mm]tan\phi=\bruch{\wurzel{2}}{-2}[/mm] richtig?
>  
> Da würde ich auf -45° kommen.

[notok] Da solltest Du nochmal rechnen. Ich erhalte [mm] $\varphi [/mm] \ [mm] \approx [/mm] \ -35.3°$ .


> Da z im 2.Quadranten liegt hätt ich jetzt noch 90° dazuaddieren
> müssen oder?

[notok] Du musst $180°_$ addieren.


Kommst Du nun auf die vorgegebenen Ergebnisse?


Gruß
Loddar


Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 18.03.2006
Autor: Esperanza

Hallo Loddar,

hab mich wohl verrechnet und das mit den Kreiswinkeln verdreht. Jetz isses logisch. aber auf die Lösung

[mm] z^6=-184+133,14i [/mm] und die w-Werte komm ich nicht.

Ich muss doch die Gradmaßangaben in Bogenmaßangaben umrechnen oder?

Also:

[mm] Bogenmass=\bruch{\pi}{180}*Gradmass [/mm]

Also: [mm] \bruch{\pi}{180}*144,7° [/mm]

Is das richtig?

Komm da trotzdem nicht auf das Ergebnis, denn wenn ich das ausmultipliziere kommen da kleinere Werte raus. Was mach ich falsch?
Und was hat es mit den w aufsich?

Esperanza




Bezug
                        
Bezug
Komplexe Zahlen: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 15:03 Sa 18.03.2006
Autor: Loddar

Hallo Esperanza!


Du brauchst diese Winkel nicht ins Bogenmaß umrechnen (wenn Dein Taschnrechner entprechend eingestellt ist ...).


Für den Wert [mm] $z^6$ [/mm] verwende die []Moivre-Formel:

[mm] $z^n [/mm] \ = \ [mm] r^n*\left[\cos(n*\varphi)+i*\sin(n*\varphi)\right]$ [/mm]

[mm] $z^6 [/mm] \ = \ [mm] \left( \ \wurzel{6} \ \right)^6*\left[\cos(6*144.7)+i*\sin(6*\144.7)\right]$ [/mm]

[mm] $z^6 [/mm] \ = \ [mm] 6^3*\left[\cos(868.4)+i*\sin(868.4)\right]$ [/mm]

[mm] $z^6 [/mm] \ = \ [mm] 216*\left[(-0.852)+i*(0.524)\right]$ [/mm]


Bei der 2. Aufgabe dann ebenfalls mit Moivre:

[mm] $\wurzel[n]{z} [/mm] \ = \ [mm] \wurzel[n]{r}*\left[\cos\left(\bruch{\varphi+k*2\pi}{n}\right)+i*\sin\left(\bruch{\varphi+k*2\pi}{n}\right)\right]$ [/mm] mit $k \ = \ 0...(n-1)$


Im Gradmaß gilt analog:

[mm] $\wurzel[n]{z} [/mm] \ = \ [mm] \wurzel[n]{r}*\left[\cos\left(\bruch{\varphi+k*360°}{n}\right)+i*\sin\left(\bruch{\varphi+k*360°}{n}\right)\right]$ [/mm] mit $k \ = \ 0...(n-1)$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]