matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Fr 20.01.2006
Autor: vicky

Aufgabe
sin z =  [mm] \bruch{1}{2i}(e^{iz} [/mm] - [mm] e^{-iz}) z\in\IC [/mm]

Schreiben Sie Real- und Imaginärteil der Funktion auf.

Hallo zusammen,

habe eine Frage zur obigen Aufgabe. Also ich weiß ja, dass man z auch als z = x + iy schreiben kann und das [mm] e^{ix} [/mm] = cos x + i sin x ist. Was ist aber [mm] e^{-ix}? [/mm] Ist das vielleicht cos x - i sin x? Wir haben das in der Vorlesung noch nicht definiert und in Büchern kann ich es auch auf die Schnelle nicht finden. Könnt ihr mir bitte weiterhelfen?

        
Bezug
Komplexe Zahlen: Genau
Status: (Antwort) fertig Status 
Datum: 17:17 Fr 20.01.2006
Autor: MathePower

Hallo vicky,

> sin z =  [mm]\bruch{1}{2i}(e^{iz}[/mm] - [mm]e^{-iz}) z\in\IC[/mm]
>  
> Schreiben Sie Real- und Imaginärteil der Funktion auf.
>  Hallo zusammen,
>  
> habe eine Frage zur obigen Aufgabe. Also ich weiß ja, dass
> man z auch als z = x + iy schreiben kann und das [mm]e^{ix}[/mm] =
> cos x + i sin x ist. Was ist aber [mm]e^{-ix}?[/mm] Ist das
> vielleicht cos x - i sin x? Wir haben das in der Vorlesung
> noch nicht definiert und in Büchern kann ich es auch auf
> die Schnelle nicht finden. Könnt ihr mir bitte
> weiterhelfen?

Ja, sicher doch.

Auf die Formel

[mm]e^{ - ix} = \;\cos \;x\; - \;i\;\sin \;x[/mm]

kommst Du, wenn in der Formel

[mm]e^{ ix} = \;\cos \;x\; + \;i\;\sin \;x[/mm]

das Argument x durch das Argument -x ersetzt wird:

[mm]e^{i\left( { - x} \right)} = \;\cos \left( { - x} \right)\; + \;i\;\sin \left( { - x} \right)[/mm]

Und dann noch die Eigenschaften der Funktionen Sinus und Cosinus ausnutzt:

[mm] \begin{gathered} \cos \left( { - x} \right)\; = \;\cos \;x \hfill \\ \sin \left( { - x} \right)\; = \; - \sin \;x \hfill \\ \end{gathered} [/mm]

Gruß
MathePower




Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:29 Sa 21.01.2006
Autor: vicky

Also ich habe mich jetzt an das Umstellen  versucht um den Real- und Imaginärteil zu bestimmen, doch ich komme leider nicht weiter. Kann bitte jemand mal schauen ob es bis dahin soweit korrekt ist?
sin z = [mm] \bruch{1}{2i}(e^{iz} [/mm] - [mm] e^{-iz}) [/mm] = [mm] \bruch{1}{2i} (e^{i(x+iy)} [/mm]  -  [mm] e^{-i(x+iy)}) [/mm] = [mm] \bruch{1}{2i} (e^{ix-y)} [/mm]  -  [mm] e^{-ix+y)}) [/mm] =  [mm] \bruch{1}{2i} (e^{-y} e^{ix} [/mm] -  [mm] e^{y}e^{-ix}) [/mm] = [mm] \bruch{1}{2i} (e^{-y} [/mm] (cos x + i sin x) -  [mm] e^{y} [/mm] ( cos x - i sin x)) =  [mm] \bruch{1}{2i} [/mm] ( cos x [mm] e^{-y} [/mm] + i sin x [mm] e^{-y} [/mm] - (cos x [mm] e^y [/mm] - i sin x [mm] e^y)) [/mm] = [mm] \bruch{1}{2i} [/mm] ( cos [mm] e^{-y} [/mm] - cos x [mm] e^y [/mm] + i sin x [mm] e^{-y} [/mm] + i sin x [mm] e^y) [/mm] und an der Stelle würde ich jetzt mit i erweitern, damit ich meinen Nenner ohne i schreiben kann. Also erhalte ich  [mm] \bruch{i (cos x e^{-y} - cos x e^y + i sin x e^{-y} + i sin x e^y)}{2i^2} [/mm] = [mm] \bruch{i cos x e^{-y} - i cos x e^y - sin x e^{-y} - sin x e^y}{-2} [/mm] und nun weiß ich nicht weiter... Vielleicht könnte ich jetzt mit (-1) erweitern und den Sinus Hyperbolicus und Kosinus Hyberbolicus anwenden aber dann stimmt irgendwas mit den Vorzeichen nicht.
Könnt ihr mir bitte einen Tipp geben?

Vielen Dank
Gruß Vicky



Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Sa 21.01.2006
Autor: Astrid

Hallo Vicky,

> Also ich habe mich jetzt an das Umstellen  versucht um den
> Real- und Imaginärteil zu bestimmen, doch ich komme leider
> nicht weiter. Kann bitte jemand mal schauen ob es bis dahin
> soweit korrekt ist?

Ich glaub schon. ;-)

>  sin z = [mm]\bruch{1}{2i}(e^{iz}[/mm] - [mm]e^{-iz})[/mm] = [mm]\bruch{1}{2i} (e^{i(x+iy)}[/mm]
>  -  [mm]e^{-i(x+iy)})[/mm] = [mm]\bruch{1}{2i} (e^{ix-y)}[/mm]  -  
> [mm]e^{-ix+y)})[/mm] =  [mm]\bruch{1}{2i} (e^{-y} e^{ix}[/mm] -  
> [mm]e^{y}e^{-ix})[/mm] = [mm]\bruch{1}{2i} (e^{-y}[/mm] (cos x + i sin x) -  
> [mm]e^{y}[/mm] ( cos x - i sin x)) =  [mm]\bruch{1}{2i}[/mm] ( cos x [mm]e^{-y}[/mm] +
> i sin x [mm]e^{-y}[/mm] - (cos x [mm]e^y[/mm] - i sin x [mm]e^y))[/mm] = [mm]\bruch{1}{2i}[/mm]
> ( cos [mm]e^{-y}[/mm] - cos x [mm]e^y[/mm] + i sin x [mm]e^{-y}[/mm] + i sin x [mm]e^y)[/mm]
> und an der Stelle würde ich jetzt mit i erweitern, damit
> ich meinen Nenner ohne i schreiben kann. Also erhalte ich  
> [mm]\bruch{i (cos x e^{-y} - cos x e^y + i sin x e^{-y} + i sin x e^y)}{2i^2}[/mm]
> = [mm]\bruch{i cos x e^{-y} - i cos x e^y - sin x e^{-y} - sin x e^y}{-2}[/mm]

[daumenhoch]
Soweit ist es doch richtig. Jetzt klammere am besten das $i$ aus und sieh den Bruch als:
[mm]-\bruch{1}{2}(i \cdot \cos{x} \, e^{-y}-i \cdot \cos{x} \, e^y - \sin{x} \, e^{-y} - \sin{x} \, e^y)[/mm]

$sin x$ und $cos x$ sind doch jetzt reelle Zahlen!

Viele Grüße
Astrid

Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Sa 21.01.2006
Autor: vicky

Aber wie kann ich jetzt den Realteil und den Imaginärteil bestimmen?

Nach umformen erhalte ich: sin z = [mm] -\bruch{1}{2} (-sinx(e^{-y} [/mm] + [mm] e^{y}) [/mm] + i cosx [mm] (e^{-y}-e^{y})). [/mm]

Ich dachte ich könnte das jetzt soweit umformen, dass ich Sinus- und Kosinus Hyperbolicus anwenden kann.
Doch sinh(x) = [mm] \bruch{1}{2}(e^x-e^{-x}) [/mm] und cosh(x) = [mm] \bruch{1}{2} (e^x [/mm] + [mm] e^{-x} [/mm] und das kommt ja irgendwie nicht ganz hin. Bin ich da auf dem falschen Weg?

Vielen Dank für die Hilfe.

Gruß Vicky

Bezug
                                        
Bezug
Komplexe Zahlen: Ersetze x durch y
Status: (Antwort) fertig Status 
Datum: 23:00 Sa 21.01.2006
Autor: MathePower

Hallo vicky,

> Aber wie kann ich jetzt den Realteil und den Imaginärteil
> bestimmen?
>  
> Nach umformen erhalte ich: sin z = [mm]-\bruch{1}{2} (-sinx(e^{-y}[/mm]
> + [mm]e^{y})[/mm] + i cosx [mm](e^{-y}-e^{y})).[/mm]
>  
> Ich dachte ich könnte das jetzt soweit umformen, dass ich
> Sinus- und Kosinus Hyperbolicus anwenden kann.
>  Doch sinh(x) = [mm]\bruch{1}{2}(e^x-e^{-x})[/mm] und cosh(x) =
> [mm]\bruch{1}{2} (e^x[/mm] + [mm]e^{-x}[/mm] und das kommt ja irgendwie nicht
> ganz hin. Bin ich da auf dem falschen Weg?

Ersetze einfach das x in der Formel für sinh(x) bzw. cosh(x) durch y. Dann paßt das schon.

>  
> Vielen Dank für die Hilfe.
>  
> Gruß Vicky

Gruß
MathePower

Bezug
                                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 So 22.01.2006
Autor: vicky


> > Nach umformen erhalte ich:

sin z = [mm]-\bruch{1}{2} (-sinx(e^{-y}[/mm] + [mm]e^{y})[/mm] + i cosx [mm](e^{-y}-e^{y})).[/mm]

>  >  Doch

sinh(x) = [mm]\bruch{1}{2}(e^x-e^{-x})[/mm] und

cosh(x) = [mm]\bruch{1}{2} (e^x[/mm] + [mm]e^{-x})[/mm].

> Ersetze einfach das x in der Formel für sinh(x) bzw.
> cosh(x) durch y. Dann paßt das schon.

Aber wenn ich das x durch das y ersetze habe ich doch immer noch andere Vorzeichen bei meiner Aufgabe oder nicht?

Vielen Dank für eure Hilfe.

Gruß Monic

Bezug
                                                        
Bezug
Komplexe Zahlen: Nur bei sinh und cosh
Status: (Antwort) fertig Status 
Datum: 20:41 So 22.01.2006
Autor: MathePower

Hallo vicky,

> > > Nach umformen erhalte ich:
> sin z = [mm]-\bruch{1}{2} (-sinx(e^{-y}[/mm] + [mm]e^{y})[/mm] + i cosx
> [mm](e^{-y}-e^{y})).[/mm]
>  
> >  >  Doch

> sinh(x) = [mm] \bruch{1}{2}(e^x-e^{-x})[/mm] [/mm] und
>
> cosh(x) = [mm]\bruch{1}{2} (e^x[/mm] + [mm]e^{-x})[/mm].
>  
> > Ersetze einfach das x in der Formel für sinh(x) bzw.
> > cosh(x) durch y. Dann paßt das schon.
>  
> Aber wenn ich das x durch das y ersetze habe ich doch immer
> noch andere Vorzeichen bei meiner Aufgabe oder nicht?

[mm]\sinh(y) = \bruch{1}{2}(e^y-e^{-y})[/mm]

[mm]\cosh(y) = \bruch{1}{2} (e^y + e^{-y})[/mm]

Eingesetzt in obige Formel:

[mm]\sin\;z = -\bruch{1}{2} (-\sin\;x\;(e^{-y}\; +\; e^{y})\; + \;i\; \cos\;x\; (e^{-y}-e^{y})).[/mm]

[mm]\gdw\;\sin\;z = - (-\sin\;x\;\cosh\;y\; - i \cos\;x\; \sinh\;y)[/mm]

>
> Vielen Dank für eure Hilfe.
>  
> Gruß Monic

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]