matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Komplexe Zahlen
Komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Form: a + bi und dritte Wurzel
Status: (Frage) beantwortet Status 
Datum: 12:59 Mi 02.11.2005
Autor: oeli1985

Hallo zusammen,
brauche etwas Hilfe bei zwei Teilaufgaben meiner 2. LA I Übung.

(a)
Schreiben Sie die folgenden komplexen Zahlen in der Form a + bi mit a, b [mm] \in \IR [/mm] :

[mm] \summe_{v=0}^{n} i^{v} [/mm]

Meine Lösung wäre:

Da [mm] \summe_{v=0}^{n} i^{v} [/mm] = 0 + i +  [mm] i^{2} [/mm] + ... + [mm] i^{n} [/mm] und
a + bi = a(1,0) + b(0,1) würde dies heißen:

0 + 1 [mm] \summe_{v=0}^{n} i^{v} [/mm]

Das erscheint mir einfach zu leicht!?

(b)
Berechnen sie alle dritten Wurzeln aus i in der Gestalt a + bi mit a,b [mm] \in \IR [/mm] und skizzieren sie die Lage dieser Zahlen in der komplexen Ebene.

Hierzu habe ich überhaupt keine Idee. Ich weiß nicht mal, was hier genau mit i gemeint ist.

Danke für eure Hilfe.

Gruß, Patrick
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Mitteilung zu b)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 Mi 02.11.2005
Autor: Herby

Hallo oeli,

hattet ihr schon die trigonometrische Form und Exponentialform?


lg
Herby

Bezug
        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Mi 02.11.2005
Autor: Mellen

Hallo,

Zu beiden Aufgaben findest du was im Analysis Forum. Die (a) ist am 30.10. reingestellt worden, titel is komplexe zahen, und die (b) habe ich heute reingestellt und Hilfe bekommen. Also guck mal im Analysis Forum :)

Gruß

Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mi 02.11.2005
Autor: Stefan

Hallo!

Hier der Link zur ersten Aufgabe: https://matheraum.de/read?t=102156&v=t. Dort wurden sehr gute Tipps gegeben. :-)

Die zweite Aufgabe löst du besser anders als im anderen Link vorgeschlagen:

Es gilt [mm] $i=e^{i \frac{\pi}{2}}$, [/mm]

und daher für die dritten Einheitswurzeln von $i$:

[mm] $w_1= e^{i \frac{\pi}{6}} [/mm] = [mm] \cos\left( \frac{\pi}{6} \right) [/mm] + i [mm] \cdot \sin\left( \frac{\pi}{6} \right)$, [/mm]

[mm] $w_2= e^{i \frac{\pi}{6} + \frac{2\pi i}{3} } [/mm] = [mm] \cos\left( \frac{5\pi}{6} \right) [/mm] + i [mm] \cdot \sin\left( \frac{5\pi}{6} \right)$, [/mm]

[mm] $w_2= e^{i \frac{\pi}{6} + \frac{4\pi i}{3} } [/mm] = [mm] \cos\left( \frac{9\pi}{6} \right) [/mm] + i [mm] \cdot \sin\left( \frac{9\pi}{6} \right)$. [/mm]

Aber erst einmal solltest du einen Crashkurs über komplexe Zahlen machen, sonst kannst du eh nichts davon verstehen:

[]http://www.mathe-online.at/lernpfade/complex/

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]