matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 So 30.10.2005
Autor: Ernesto

Salut wie kann ich folgendes ausdruck in der Form  a + bi darstellen

[mm] \summe_{v=o}^{n} i^v [/mm] .

hier gilt doch für 2n  , n [mm] \in [/mm] N ist i = -1    und für 2n + 1 gilt i

daraus folgere ich : i + (-1)+ i + (-1) ...................... aber wie nun weiter

Danke ...... Thomas

        
Bezug
Komplexe Zahlen: nicht ganz richtig!
Status: (Antwort) fertig Status 
Datum: 18:35 So 30.10.2005
Autor: Loddar

Hallo Ernesto!


Das ist aber nur die halbe Wahrheit.


Es gilt:

[mm] $i^{4m} [/mm] \ = \ +1$

[mm] $i^{4m+1} [/mm] \ = \ +i$

[mm] $i^{4m+2} [/mm] \ = \ -1$

[mm] $i^{4m+3} [/mm] \ = \ -i$


Damit gilt doch für die Teilsumme [mm] $i^{4m} [/mm] + [mm] i^{4m+1} [/mm] + [mm] i^{4m+2} [/mm] + [mm] i^{4m+3} [/mm] \ = \ +1 + i - 1 - i \ = \ 0$


Kommst Du damit nun etwas weiter?


Gruß
Loddar


Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Mo 31.10.2005
Autor: Ernesto

nn das klingt vernünftig.. aber ich kann och nicht einfach die einzelnen Terme i^2n, i^2n+1
............i^4n, i^4n+1 .... verrechnen das sieht irgendwie unformal aus oder nicht ....

Gruß Thomas

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 31.10.2005
Autor: taura

Salut Thomas!

Ich weiß zwar nicht genau was du mit deiner Frage meinst, aber was du machen musst ist die folgende Fallunterscheidung für n:

$n=4k\ f"ur\ ein\ k [mm] \in \IN$ [/mm]
$n=4k+1\ f"ur\ ein\ k [mm] \in \IN$ [/mm]
$n=4k+2\ f"ur\ ein\ k [mm] \in \IN$ [/mm]
$n=4k+3\ f"ur\ ein\ k [mm] \in \IN$ [/mm]

Überleg dir mal, was in welchem Fall mit der Summe passiert :-)

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]