matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Wurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Wurzeln
Komplexe Wurzeln < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Wurzeln: Rechnen ohne Taschenrechner
Status: (Frage) beantwortet Status 
Datum: 00:11 Mi 30.07.2008
Autor: BlubbBlubb

Aufgabe
Von der komplexen Zahl z=-128 + 128 [mm] \wurzel{3}*j [/mm] sind alle Lösungen w der Gleichung [mm] w^4=z, [/mm] also alle vierten Wurzeln in trigonometrischer Form anzugeben. Die Wurzel mit dem größten Realteil ist außerdem in Normalfrom anzugeben.
(Hinweis arctan [mm] \wurzel{3} [/mm] = [mm] \bruch{\pi}{3}, [/mm] man beachte den Quadrtanten, in dem z liegt, [mm] \wurzel[4]{256} \in \IN.) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

meine vorgehensweise:

[mm] w_k [/mm] = [mm] \wurzel[n]{r}*e^{i*(\bruch{\alpha+2k\pi}{n})} [/mm]

[mm] r=\wurzel{x^2+y^2} =\wurzel{(-128)^2 + (128*\wurzel{3})^2}=256 [/mm]

(Hier ist schonmal mein hauptproblem, wie soll ich ohne taschenrechner drauf kommen, dass das ergebnis der wurzel 256 ist?)

[mm] cos(\alpha)=\bruch{x}{r} =\bruch{-128}{256}=\bruch{-1}{2} [/mm]
[mm] \alpha=\bruch{2\pi}{3} [/mm]

(Hier das nächste problem woher weiß ich das der [mm] arccos(\bruch{-1}{2})=\bruch{2\pi}{3} [/mm] ist. die groben werte wie arccos(1), arcsin(1), arccos(0),arcsin(0) weiß ich ja, aber gibt es für die anderen werte irgendwelche merkregeln oder sonstiges?)

[mm] w_0=\wurzel[4]{256}*e^{i*(\bruch{\pi}{6})}=4e^{i(\bruch{\pi}{6})}=4(cos(\bruch{\pi}{6})+isin(\bruch{\pi}{6})) [/mm]

(Auch hier das problem, woher weiß ich ohne taschenrechner, was die vierte wurzel aus 256 ist?)

[mm] w_1=4e^{i(\bruch{2\pi}{3})}=4(cos(\bruch{2\pi}{3})+isin(\bruch{2\pi}{3})) [/mm]


[mm] w_2=4e^{i(\bruch{7\pi}{6})}=4(cos(\bruch{7\pi}{6})+isin(\bruch{7\pi}{6})) [/mm]


[mm] w_3=4e^{i(\bruch{5\pi}{3})}=4(cos(\bruch{5\pi}{3})+isin(\bruch{5\pi}{3})) [/mm]

(wie erkenn ich welches der höchste wert ist? ich habe zwar das bild der sinus und cosinus funktion im kopf, aber ich kenne nur die werte von [mm] \bruch{\pi}{2}, \pi [/mm] , [mm] \bruch{3\pi}{2} [/mm] und [mm] 2\pi [/mm] aus dem kopf. werte wie [mm] \bruch{7}{\pi} [/mm] hab ich ja natürlich nicht in kopf, doch man muss doch irgendwie an diese werte kommen, wenn man keine hilfsmittel zur berechnung verwenden darf.)

Wie das mit der Normalform gemeint ist versteh ich nicht.
[mm] x=4cos(\bruch{\pi}{6}) [/mm]
[mm] y=4sin(\bruch{\pi}{6}) [/mm]

Normalform:
z=x+jy

[mm] z=4cos(\bruch{\pi}{6}) +j*4sin(\bruch{\pi}{6}) [/mm]



        
Bezug
Komplexe Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mi 30.07.2008
Autor: abakus


> Von der komplexen Zahl z=-128 + 128 [mm]\wurzel{3}*j[/mm] sind alle
> Lösungen w der Gleichung [mm]w^4=z,[/mm] also alle vierten Wurzeln
> in trigonometrischer Form anzugeben. Die Wurzel mit dem
> größten Realteil ist außerdem in Normalfrom anzugeben.
> (Hinweis arctan [mm]\wurzel{3}[/mm] = [mm]\bruch{\pi}{3},[/mm] man beachte
> den Quadrtanten, in dem z liegt, [mm]\wurzel[4]{256} \in \IN.)[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> meine vorgehensweise:
>  
> [mm]w_k[/mm] = [mm]\wurzel[n]{r}*e^{i*(\bruch{\alpha+2k\pi}{n})}[/mm]
>  
> [mm]r=\wurzel{x^2+y^2} =\wurzel{(-128)^2 + (128*\wurzel{3})^2}=256[/mm]
>  
> (Hier ist schonmal mein hauptproblem, wie soll ich ohne
> taschenrechner drauf kommen, dass das ergebnis der wurzel
> 256 ist?)

Weil [mm] (-128)^2 [/mm] + [mm] (128*\wurzel{3})^2=128^2+3*128^2=4*128^2 [/mm] ist. Die Wurzel daraus ist 2*128.

>  
> [mm]cos(\alpha)=\bruch{x}{r} =\bruch{-128}{256}=\bruch{-1}{2}[/mm]
>  
> [mm]\alpha=\bruch{2\pi}{3}[/mm]
>  
> (Hier das nächste problem woher weiß ich das der
> [mm]arccos(\bruch{-1}{2})=\bruch{2\pi}{3}[/mm] ist. die groben werte
> wie arccos(1), arcsin(1), arccos(0),arcsin(0) weiß ich ja,
> aber gibt es für die anderen werte irgendwelche merkregeln
> oder sonstiges?)

Die Sinuswere für 0°, 30°, 45°, 60° und 90° sollte man unbedingt kennen.
Zur Erleichterung folgende Eselsbrücke: die Werte sind (in dieser Reihenfolge) [mm] \bruch{1}{2}*\wurzel{0}, \bruch{1}{2}*\wurzel{1}, \bruch{1}{2}*\wurzel{2}, \bruch{1}{2}*\wurzel{3}, \bruch{1}{2}*\wurzel{4} [/mm] (entsprechende Kosinuswerte in umgekehrter Reihenfolge).
Gruß Abakus


>  
> [mm]w_0=\wurzel[4]{256}*e^{i*(\bruch{\pi}{6})}=4e^{i(\bruch{\pi}{6})}=4(cos(\bruch{\pi}{6})+isin(\bruch{\pi}{6}))[/mm]
>
> (Auch hier das problem, woher weiß ich ohne taschenrechner,
> was die vierte wurzel aus 256 ist?)
>
> [mm]w_1=4e^{i(\bruch{2\pi}{3})}=4(cos(\bruch{2\pi}{3})+isin(\bruch{2\pi}{3}))[/mm]
>
>
> [mm]w_2=4e^{i(\bruch{7\pi}{6})}=4(cos(\bruch{7\pi}{6})+isin(\bruch{7\pi}{6}))[/mm]
>  
>
> [mm]w_3=4e^{i(\bruch{5\pi}{3})}=4(cos(\bruch{5\pi}{3})+isin(\bruch{5\pi}{3}))[/mm]
>  
> (wie erkenn ich welches der höchste wert ist? ich habe zwar
> das bild der sinus und cosinus funktion im kopf, aber ich
> kenne nur die werte von [mm]\bruch{\pi}{2}, \pi[/mm] ,
> [mm]\bruch{3\pi}{2}[/mm] und [mm]2\pi[/mm] aus dem kopf. werte wie
> [mm]\bruch{7}{\pi}[/mm] hab ich ja natürlich nicht in kopf, doch man
> muss doch irgendwie an diese werte kommen, wenn man keine
> hilfsmittel zur berechnung verwenden darf.)
>  
> Wie das mit der Normalform gemeint ist versteh ich nicht.
>  [mm]x=4cos(\bruch{\pi}{6})[/mm]
>  [mm]y=4sin(\bruch{\pi}{6})[/mm]
>  
> Normalform:
>  z=x+jy
>  
> [mm]z=4cos(\bruch{\pi}{6}) +j*4sin(\bruch{\pi}{6})[/mm]
>  
>  


Bezug
        
Bezug
Komplexe Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 31.07.2008
Autor: BlubbBlubb

kann mir jemand sagen wie ich hier die normalenform von der wurzel mit dem größten realteil notiere?

in meiner forendisskusion "komplexe wurzeln(3)"
hat man das z einfach vereinfacht dargestellt indem man mit dem konjugiert komplexen des nenners multipliziert hat, aber diese methode hat mit dieser aufgabe hier nichts mehr zu tun.



Bezug
                
Bezug
Komplexe Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 31.07.2008
Autor: abakus


> kann mir jemand sagen wie ich hier die normalenform von der
> wurzel mit dem größten realteil notiere?
>
> in meiner forendisskusion "komplexe wurzeln(3)"
>  hat man das z einfach vereinfacht dargestellt indem man
> mit dem konjugiert komplexen des nenners multipliziert hat,
> aber diese methode hat mit dieser aufgabe hier nichts mehr
> zu tun.


Rechne einfach von allen deinen 4 Lösungen den Realteil aus. Wenn ich mir die vier Kosinuswerte so ansehe, hat [mm] cos(\pi/6) [/mm] mit [mm] \bruch{\wurzel{3}}{2} [/mm] den größten Wert, der größte Realteil ist damit [mm] 4*\bruch{\wurzel{3}}{2} [/mm] , der zugehörige Imaginärteil ist [mm] 4*sin(\pi/6)=4*0,5=2. [/mm]
Die gesuchte Zahl ist also [mm] 2*\wurzel{3}+2i [/mm] .
Gruß Abakus

>  
>  


Bezug
                        
Bezug
Komplexe Wurzeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Fr 01.08.2008
Autor: BlubbBlubb

so okay nun versteh ich das, hab die wichtigsten werte jetzt auch auswendig gelernt, bzw. mir die merkregel für die wichtigsten sinus und cosinus werte eingeprägt. wobei um herauszufinden welches der größte realteil ist musste ich mir die cosinus funktion skizzieren, aber ich glaub mal das ist auch der richtige weg.

thx. herr lehrer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]