Komplexe Textaufgabe < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Beim morgendlichen Joggen am Strand liest Mike bei der DLRG-Station um 6 Uhr eine Temperatur von 10° ab. Für den Tagesverlauf bis ca. 22 Uhr weiß er aus Erfahrung, dass sich die Änderungsrate der Temperatur angeben lässt durch die Gleichung f(t)= -11/32 t + 77/16, t element aus [6;22], f(t) in °C je Stunde.
a) Bestimmen Sie die Temperatur um 12 Uhr.
b) Bestimmen sie die maximale Tagestemperatur.
c) Bestimmen sie den Mittelwert der an diesem Tag zwischen 6 Uhr und 22 Uhr erwarteten Temperaturen. |
Hallo,
ich habe jetzt schon mehrfahc probiert diese Aufgabe zu lösen, jedoch komme ich zu keinem logischen Ergebnis.
Bei Aufgabenteil a dachte ich eigentlich, dass ich t=12 setzten muss und dann f(12) ausrechnen müsste. Jedoch kommt da 0,6875 raus, und es kann ja nicht sein, dass um 12 uhr eine temperatur von 10,69° besteht.
Bei Aufgabenteil b wollte ich eigentlich das Integral von 6 - 22 berechnen, jedoch erhalte ich da auch kein Ergebnis bzw. es kommt null heraus.
Und Aufgabenteil c müsste ich ja eigentlich mit der Mittelwertsform von Integralen berechnen, jedoch weiß ich da nicht wie ich t1 und t2 wählen muss.
Ich hoffe mir kann jemand helfen.
Danke schon einmal für eure Hilfe.
LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Beim morgendlichen Joggen am Strand liest Mike bei der
> DLRG-Station um 6 Uhr eine Temperatur von 10° ab. Für den
> Tagesverlauf bis ca. 22 Uhr weiß er aus Erfahrung, dass
> sich die Änderungsrate der Temperatur angeben lässt durch
> die Gleichung f(t)= -11/32 t + 77/16, t element aus [6;22],
> f(t) in °C je Stunde.
> a) Bestimmen Sie die Temperatur um 12 Uhr.
> b) Bestimmen sie die maximale Tagestemperatur.
> c) Bestimmen sie den Mittelwert der an diesem Tag zwischen
> 6 Uhr und 22 Uhr erwarteten Temperaturen.
> Hallo,
> ich habe jetzt schon mehrfahc probiert diese Aufgabe zu
> lösen, jedoch komme ich zu keinem logischen Ergebnis.
> Bei Aufgabenteil a dachte ich eigentlich, dass ich t=12
> setzten muss und dann f(12) ausrechnen müsste. Jedoch kommt
> da 0,6875 raus, und es kann ja nicht sein, dass um 12 uhr
> eine temperatur von 10,69° besteht.
$f(t)$ ist Änderungsrate der Temperatur (in Grad Celsius pro Stunde). Also ist die Temperatur zur Zeit $t$ eine Stammfunktion $F(t)$ von $f(t)$ die die zusätzliche Eigenschaft hat, dass $F(6)=10$ sein muss.
Nachdem Du diese Stammfunktion $F(t)$ bestimmt hast, kannst Du die Temperatur um 12 Uhr als $F(12)$ bestimmen.
> Bei Aufgabenteil b wollte ich eigentlich das Integral von
> 6 - 22 berechnen, jedoch erhalte ich da auch kein Ergebnis
> bzw. es kommt null heraus.
Die Stammfunktion $F(t)$, die Du zur Lösung von Teilaufgabe a) bestimmt hast, ist eine in $t$ quadratische Funktion. Die $t$-Koordinate ihres Hochpunktes ist gerade die Nullstelle ihrer (linearen) Ableitung $f(t)$. Löse also die Gleichung $f(t)=0$ und berechne dann für diese Nullstelle von $f(t)$ den Wert von $F(t)$, d.h. die maximale Temperatur.
> Und Aufgabenteil c müsste ich ja eigentlich mit der
> Mittelwertsform von Integralen berechnen, jedoch weiß ich
> da nicht wie ich t1 und t2 wählen muss.
Diese Zeiten sind doch gegeben. Es ist [mm] $t_1=6$ [/mm] und [mm] $t_2=22$ [/mm] und Du hast somit folgenden Wert zu berechnen:
[mm]\frac{1}{22-6}\cdot\int\limits_6^{22} F(t)\, dt=\ldots[/mm]
|
|
|
|
|
Also ich habe jetzt nochmal nachgerechnet und für F(12)=20,3°C herausbekommen.
Ich musste doch an die Stammfunktion noch ein +c hängen und dann F(6) = 10 ausrechnen oder?
bei b habe ich t=14 heraus bekommen. Aber es kann doch nicht sein, dass die maximale Tagestemperatur 14° sind, wenn es schon um 12 uhr ca. 20° sind.
und bei c weiß ich immer noch nicht genau wie ich das machen soll.
wenn ich das integral wie beschrieben berechne, dann kommt da 0 raus.
das verwirrt mich irgendwie alles :-(
|
|
|
|
|
> Also ich habe jetzt nochmal nachgerechnet und für
> F(12)=20,3°C herausbekommen.
> Ich musste doch an die Stammfunktion noch ein +c hängen
> und dann F(6) = 10 ausrechnen oder?
Ja, und wie lautet Deine Stammfunktion? Ich erhalte
[mm]F(t)=-\frac{11}{64}t^2+\frac{77}{16}t-\frac{203}{16}[/mm]
>
> bei b habe ich t=14 heraus bekommen. Aber es kann doch
> nicht sein, dass die maximale Tagestemperatur 14° sind,
> wenn es schon um 12 uhr ca. 20° sind.
Da hast Du natürlich recht: das kann nicht sein. Also musst Du irgendwo einen Rechenfehler verbrochen haben. Mit meinem $F(t)$ ist die Temperatur um 14 Uhr [mm] $F(14)=21^\circ [/mm] C$, was nicht direkt falsch zu sein scheint...
>
> und bei c weiß ich immer noch nicht genau wie ich das
> machen soll.
> wenn ich das integral wie beschrieben berechne, dann kommt
> da 0 raus.
Du hast wahrscheinlich die Änderungsrate des Temperaturverlaufes, also $f(t)$ integriert: ich habe aber ausdrücklich geschrieben, dass Du die Temperatur selbst, also $F(t)$ integrieren sollst.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:36 Mi 25.03.2009 | Autor: | leduart |
Hallo
Dein t=14 ist die Zeit, nicht die Temp. bei der du das max hast.
gruss leduart
|
|
|
|
|
tut mir leid, dass ich das mit der Integration von der Stammfunktion überlesen bzw. -sehen habe.
DAnkeschön für die Hilfe.
Jetzt hab ichs wenigstens verstanden!!!!
|
|
|
|