matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikKomplexe Rechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Elektrotechnik" - Komplexe Rechnung
Komplexe Rechnung < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Rechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 14.09.2005
Autor: Marcusgoe

Hallo
Ersteinmal vielen Dank für eure hHilfe.
Nun ein neues Problem: Zeigen Sie mittels komplexer Rechnung, dass sich drei um 120 Grad verschobene Wechselspannungen auslöschen.

Komplexe Rechnung ist ein Buch mit sieben Siegel.

Bis bald
Marcus


        
Bezug
Komplexe Rechnung: Komplexe Spannung
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 14.09.2005
Autor: Infinit

Hallo Markus,
die Frage, von der man hier ausgehen soll, ist, wie lässt sich eine Spannung, die durch
u [mm] \cdot \cos(\omega [/mm] t + [mm] \phi) [/mm] beschrieben wird, im Komplexen beschreiben. Ich weiss nicht, wie weit Du mit der komplexen Rechnung vertraut bist, deswegen gebe ich hier einfach mal eine Gleichung an mit der man weiterrechnen kann, ohne sie jedoch herzuleiten:

u [mm] \cdot \cos(\omega [/mm] t + [mm] \phi) [/mm] = [mm] \bruch{1}{2} [/mm] u [mm] \cdot (e^{j(\omega t + \phi)} [/mm] + [mm] e^{-j(\omega t + \phi)}) [/mm]

[mm] \phi [/mm] ist hierbei der Phasenbetrag, um den die Spannung gegenüber einer cosinusförmigen Spannung verschoben ist.  Wenn man nun drei Spannungen hat, die jeweils um 120 Grad oder [mm] \bruch{2 \pi}{3} [/mm] gegeneinander verschoben sind, so gilt für die Summe aus diesen Spannungen
[mm] \bruch{u}{2} \cdot (e^{j\omega t } [/mm] + [mm] e^{j(\omega t + \bruch{2 \pi}{3}) } [/mm] + [mm] e^{j(\omega t + \bruch{4 \pi}{3})} [/mm] )  
+ [mm] \bruch{u}{2} \cdot (e^{-j\omega t } [/mm] + [mm] e^{-j(\omega t + \bruch{2 \pi}{3}) } [/mm] + [mm] e^{-j(\omega t + \bruch{4 \pi}{3})} [/mm] )  
Aus dem oberen Teil der Gleichung lässt sich [mm] e^{j\omega t} [/mm] ausklammern, aus dem unteren Teil [mm] e^{-j\omega t}. [/mm] Diese Anteile der Summenspannung sind, wie man am t sieht,  zeitabhängig.  Demzufolge muss, damit die Summe aus den drei Spannungen zu jedem Zeitpunkt sich zu Null ergibt, der Ausdruck in der folgenden Klammer 0 sein:
(1 + [mm] e^{j \bruch{2 \pi}{3}} [/mm] + [mm] e^{j \bruch{4 \pi}{3}}) [/mm]
Dies ist richtig für die obere Zeile des großen Ausdrucks, für den zweiten Teil, der die Terme mit [mm] e^{-j\omega t} [/mm] enthält, enthalten die Argumente der e-Funktionen negative Winkel.
Wenn Du nun den Ausdruck von oben mit der 1 und den beiden e-Funktionen auswertest, wirst Du sehen, dass sich dieser Ausdruck zu Null ergibt.
Hierzu muss man nur noch wissen, dass
[mm] e^{j \phi} [/mm] = [mm] \cos \phi [/mm] + j [mm] \sin \phi [/mm] ist. Die Werte der Sinus- und Kosinusfunktion für 120 und 240 Grad kannst Du leicht in Tabellen nachschlagen, falls Du sie nicht auswendig weisst.
Ja, und damit ist der Beweis im Komplexen fertig.
Viele Grüße,
Infinit

Bezug
                
Bezug
Komplexe Rechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:18 Do 15.09.2005
Autor: Marcusgoe

Hallo Infinit
Vielen Dank für die Antwort.
Bis bald Marcus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]